Call for additional data for meta-analysis

Introduction

On 18 December 2018, the JRC SAFEMANURE project team made a presentation about the features and strengths of the **meta-analysis tool** to retrieve data with high reliability across a series of fertiliser studies performed under different circumstances.

The presentation stressed the importance of using **pairwise comparisons** between mineral fertilisers and processed manure materials, and always in reference to a **control** treatment without any fertiliser.

Such pairwise comparisons are considered the best way to properly answer the **main question** in this project: "Which processed manure materials behave like mineral fertilisers in terms of nitrogen agronomic efficiency and environmental impact from nitrogen loss?"

Evaluation of information already provided

The JRC has been evaluating the various studies and references already kindly provided by NEG experts, with a view to incorporating them in the meta-analysis. The enclosed Excel file provides an overview of which studies were **retained** and which ones had to be **excluded** (with a reason).

Call for additional data

As explained during the presentation, the strength of the meta-analysis **improves with the number of different studies** that can be used as input. Unfortunately, at present, the JRC has little useable information on certain types of processed manure materials, including those that are claimed to perform as well as mineral fertilisers (e.g. scrubbing salts, struvite). Hence, the JRC cordially invites the NEG to provide additional studies and references that can be included in the meta-analysis, in particular for processed manure materials that are claimed to perform as well as mineral fertilisers.

What are the requirements for useable studies?

Studies should compare plant or ecosystem responses after:

- the application of processed manure (e.g. pellets, biochar, mineral concentrate or scrubbing salts); AND
- the application of mineral fertiliser (e.g. ammonium nitrate); AND
- zero fertiliser treatment (control treatment without any fertiliser addition)

under equal experimental conditions, relevant for the EU (e.g. EU climate and soil).

For these comparisons, data need to be provided on **at least one** of the following parameters for the three cases (processed manure/mineral fertiliser/control)

- Nitrogen Uptake; OR
- Nitrogen Uptake Efficiency; OR
- Apparent Nitrogen Recovery; OR
- Crop yield; OR
- Nitrogen leaching losses

The information should be provided in **English**.

We also welcome studies that contain, **in addition**, data on:

• Other nitrogen losses than leaching (N₂O, NH₃, N soil)

Not mandatory, but much appreciated, is **additional contextual information** related to:

- Chemical composition of processed manure (e.g. pH, TN, TC, organic N)
- Type of soil
- Climate data OR GPS coordinates of the place where the experiment took place
- Plant species used for the experiment

Before sending input, experts are advised to check whether the above conditions are met and whether the studies were already assessed by the JRC for possible inclusion in the meta-analysis (see Excel file).

All info can be sent directly to the functional mailbox: <u>JRC-</u> <u>SAFEMAMURE@ec.europa.eu</u>

The JRC team would like to thank in advance all NEG members for their contributions.

see following pages

This sheet contains an overview of all studies used by the JRC for the meta-analysis

This includes studies and references provided by the NEG experts (see first sheet) as well as studies from the JRC's own literat review

Baral, K. R., R. Labouriau, et al. (2017). "Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley."

- initial list: 1 https://doi.org/10.1016/j.agee.2017.01.012. Basso, B. and J. T. Ritchie (2005). "Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in Michigan."
 - 2 https://doi.org/10.1016/j.agee.2005.01.011.
 - Cavalli, D., G. Cabassi, et al. (2014). "Nitrogen fertiliser value of digested dairy cow slurry, its liquid and solid fractions, and of dairy cow slurry."
 - 3 https://doi.org/10.4081/ija.2014.567.
 - Chantigny, M. H., D. A. Angers, et al. (2008). "Yield and Nutrient Export of Grain Corn Fertilized with Raw and Treated Liquid Swine" DOI 10.2134/agronj2007.0361. Chantigny, M. H., D. A. Angers, et al. (2007). "Gaseous Nitrogen Emissions and Forage Nitrogen Uptake on Soils Fertilized with Raw and Treated Swine Manure" DOI 10.2134/jeq2007.0083.
 - Cordovil, C. M. d. S., R. Basanta, et al. (2012). "Application of Fresh and Treated Pig Slurries and a Novel Organic-Mineral Fertilizer in Maize Crop." DOI
 - 6 10.1080/00103624.2012.697237.
 Fangueiro, D., S. Surgy, et al. (2015). "Band application of treated cattle slurry as an alternative to slurry injection: Implications for gaseous emissions, soil quality, and pla
 - 7 growth." https://doi.org/10.1016/j.agee.2015.06.003.
 - 8a Fouda, S., S. von Tucher, et al. (2013). "Nitrogen availability of various biogas residues applied to ryegrass" DOI 10.1002/jpln.201100233.
 - 8b Fouda S. S. (2011) "Nitrogen availability of biogas residues" Ph.D., TECHNISCHE UNIVERSITÄT MÜNCHEN
 - Klop, G., G. L. Velthof, et al. (2012). "Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer." [
 - 9 10.1111/j.1475-2743.2012.00434.x. Lehrsch, G. A., B. Brown, et al. (2015). "Compost and Manure Effects on Sugarbeet Nitrogen Uptake, Nitrogen Recovery, and Nitrogen Use Efficiency." DOI

- Lošák, T., A. Zatloukalová, et al. (2011). "Comparison of the effectiveness of digestate and mineral fertilisers on yields and quality of kohlrabi (Brassica oleracea, L.)."
- https://doi.org/10.11118/actaun201159030117.
 Miller, J. J., B. W. Beasley, et al. (2004). "Barley dry matter yield, crop uptake, and soil nutrients under fresh and composted manure containing straw or wood-chip bedd
 10.4141/p03-208
- 12 10.4141/p03-208.
- 13 Pampuro, N., C. Bertora, et al. (2017). "Fertilizer value and greenhouse gas emissions from solid fraction pig slurry compost pellets." DOI 10.1017/s002185961700079x. Riva, C., V. Orzi, et al. (2016). "Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia
- 14 emission impacts." https://doi.org/10.1016/j.scitotenv.2015.12.156. Rubæk, G. H., K. Henriksen, et al. (1996). "Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Loliu)
- 15 perenne)." DOI 10.1017/s0021859600075572.
- 16 Schröder, J. J., D. Uenk, et al. (2007). "Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland." DOI 10.1007/s11104-007-9365-7.

^{10 10.2134/}agronj14.0507.

		Schröder, J. J., W. Visser, et al. (2013). "Effects of short-term nitrogen supply from livestock manures and cover crops on silage maize production and nitrate leaching."
	17	Management 29 (2): 151-160 DOI 10.1111/sum.12027.
	18	Sigurnjak, I. (2017). "Animal manure derivatives as alternatives for synthetic nitrogen fertilizers" Ph.D., Gent : UGent.
		Tagoe, S. O., T. Horiuchi, et al. (2010). "EFFECTS OF CARBONIZED CHICKEN MANURE ON THE GROWTH, NODULATION, YIELD, NITROGEN AND PHOSPHORUS CONTENTS
	19	GRAIN LEGUMES." DOI 10.1080/01904160903575915.
		Terhoeven-Urselmans, T., E. Scheller, et al. (2009). "CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley."
	20	https://doi.org/10.1016/j.apsoil.2009.05.012.
		van Middelkoop, J. C. and G. Holshof (2017). "Nitrogen Fertilizer Replacement Value of Concentrated Liquid Fraction of Separated Pig Slurry Applied to Grassland" DOI
	21	10.1080/00103624.2017.1323101.
		Vaneeckhaute, C., E. Meers, et al. (2013). "Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture."
	22	https://doi.org/10.1016/j.biombioe.2012.12.036.
		Viaene, J., V. Nelissen, et al. (2017). "Improving the product stability and fertilizer value of cattle slurry solid fraction through co-composting or co-ensiling."
	23	https://doi.org/10.1016/j.wasman.2016.12.037.
		Walsh, J. J., D. L. Jones, et al. (2012). "Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost." DOI
	24	10.1002/jpln.201200214.
added from		Chantigny, M. H., P. Rochette, et al. (2010). "Soil Nitrous Oxide Emissions Following Band-Incorporation of Fertilizer Nitrogen and Swine Manure." 39(5): 1545-1553 DC
authors:	25	10.2134/jeq2009.0482.
		Chantigny, M. H., D. E. Pelster, et al. (2013). "Nitrous Oxide Emissions from Clayey Soils Amended with Paper Sludges and Biosolids of Separated Pig Slurry." 42(1): 30-3
	26	10.2134/jeq2012.0196.
	27	Gagnon, B., N. Ziadi, et al. (2012). "Biosolids from Treated Swine Manure and Papermill Residues Affect Corn Fertilizer Value." 104(2): 483-492 DOI 10.2134/agronj20.
		Pelster, D. E., M. H. Chantigny, et al. (2012). "Nitrous Oxide Emissions Respond Differently to Mineral and Organic Nitrogen Sources in Contrasting Soil Types." 41(2): 42
	28	DOI 10.2134/jeq2011.0261.
added from		
NEG	29	de Boer, H. C. (2008) "Co-digestion of Animal Slurry Can Increase Short-Term Nitrogen Recovery by Crops," 37(5): 1968-1973, DOI: 10.2134/jeg2007.0594

de Boer, H. C. (2008). "Co-digestion of Animal Slurry Can Increase Short-Term Nitrogen Recovery by Crops." 37(5): 1968-1973 DOI 10.2134/jeq2007.0594.
 Ryu, H.-D. and S.-I. Lee (2016). "Struvite recovery from swine wastewater and its assessment as a fertilizer." Environmental Engineering Research 21(1): 29-35 DOI 10.4491/eer.2015.066.

NEG:

Song, X., M. Liu, et al. (2015). "Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field." Appli 31 Ecology 89: 25-34 DOI https://doi.org/10.1016/j.apsoil.2015.01.005.

This sheet contains an overview of all studies provided by the NEG experts for possible use in the meta-analysis An assessment is provided for every study that explains the reasons for its inclusion or exclusion in the meta-analysis

Source	Input period	Document's title (as provided by working groups members) or Publication/Study (as suggested by working group members)	0	Data on N-fertilising agronomic value (Nitrogen Uptake or similar, Crop Yield or similar)		About processed manure used as N- fertiliser	Information summary	Inclusion or Exclusion in the meta- analysis
BE	janv-18	Sigurnjak - PhD	γ	γ	Y	Υ	Liquid fraction digestate and mineral concentrate	Included
BE	août-18	http://www.digesmart.eu/eng/					No downloadable results from the field trials	For the future
BE	août-18	Klop, G, G. L. Velthof & J.W. van Groenigen, 2012. Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer. Soil Use and Management, Volume 28, Issue 4, pages 468–477. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.147 5-2743.2012.00434.x	Y	Y	Y	Y	Already included in the meta-analysis	Included
BE	août-18	Middelkoop, van J.C. & G. Holshof, 2017. Nitrogen Fertilizer Replacement Value of Concentrated Liquid Fraction of Separated Pig Slurry Applied to Grassland. Communications in Soil Science and Plant Analysis 48, 1132-1144. https://www.tandfonline.com/doi/full/10.1080/001036 24.2017.1323101		Y	Y	Y	Already included in the meta-analysis	Included
BE	août-18	Schröder J. J., W. De Visser , F. B. T. Assinck , G. L. Velthof , W. Van Geel & W. Van Dijk, 2014. Nitrogen Fertilizer Replacement Value of the Liquid Fraction of Separated Livestock Slurries Applied to Potatoes and Silage Maize, Communications in Soil Science and Plant Analysis, 45:1, 73-85, DOI: 10.1080/00103624.2013.848881. https://www.tandfonline.com/doi/pdf/10.1080/001036 24.2013.848881?needAccess=true		?	?	?	requested via Research Gate	No access to pdf
BE	août-18	Schröder, J.J., W. de Visser, F. B. T. Assinck & G. L. Velthof, 2013. Effects of short-term nitrogen supply from livestock manures and cover crops on silage maize production and nitrate leaching. Soil Use and Management. Volume 29, Issue 2, pages 151–160. https://onlinelibrary.wiley.com/doi/epdf/10.1111/sum. 12027	Y	Y	Y	Y	Already included in the meta-analysis	Included

BE	août-18	Sigurnjak I., J. De Waele, E. Michels, F.M.G. Tack, E. Meers, S. De Neve, 2012. Nitrogen release and mineralization potential of derivatives from nutrient recovery processes as substitutes for fossil fuel-based nitrogen fertilizers. Soil Use and Management 33, 437–446. doi: 10.1111/sum.12366. https://onlinelibrary.wiley.com/doi/full/10.1111/sum.1 2366	Y	Y	Y	Y	Already included in the meta-analysis (Ph.D. data)	Included
BE	août-18	2_Draft Excel Addendum to SAFEMANURE Methodology consultation - Final- Belgium- only Q1	Ν	Ν			Database on composition of processed manure	Excluded
BE	août-18	Vries, de J.W., C.M. Groenestein and I.J.M. De Boer, 2012. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. Journal of Environmental Management 102, 173-183. https://doi.org/10.1016/j.jenvman.2012.02.032		Ν			LCA on manure processing	Excluded
BE	août-18	Zarebska, A., D. Romero Nieto, K. V. Christensen, L. Fjerbæk Søtoft & B. Norddahl, 2015. Ammonium Fertilizers Production from Manure: A Critical Review. Critical Reviews in Environmental Science and Technology, 45:14, 1469-1521, DOI: 10.1080/10643389.2014.955630.		Ν			No access to the full text. From abstract: focused on the manure processing and products characterisation	Excluded
BE	août-18	Schils, R.L.M., R. Postma, D. van Rotterdam, K.B. Zwart, 2005. Agronomic and environmental consequences of using liquid mineral concentrates on arable farms. Journal of the Science of Food and Agriculture 95, 3015–3024. https://onlinelibrary.wiley.com/doi/abs/10.1002/jsfa.71 46		Ν			No CY, NU data	Excluded
BE	août-18	Vaneeckhaute Céline, Viooltje Lebuf, Evi Michels, Evangelina Belia, Peter A. Vanrolleghem, Filip M. G. Tack & Erik Meers, 2017. Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste Biomass Valor (2017) 8:21–40. https://link.springer.com/article/10.1007%2Fs12649- 016-9642-x	Ν	Ν			No CY, NU data	Excluded
BE	août-18	Velthof, G.L., 2011. Synthesis of the research within the framework of the Mineral Concentrates Pilot. Alterra report 2224, Wageningen, The Netherlands http://library.wur.nl/WebQuery/wurpubs/fulltext/1920 69	Y	N			No raw data, only NRFV ranges, no CY, interesting bibliography to be used	Excluded
BE	août-18	Velthof, G.L., 2012. Mineral Concentrates Pilot; synthesis of the results of 2011. Alterra report 2363. Wageningen, The Netherlands. http://library.wur.nl/WebQuery/wurpubs/fulltext/2558 94	Y	Ν			No raw data, only NRFV ranges, no CY, interesting bibliography to be used	Excluded
BE	août-18	Velthof, G.L., 2015. Mineral concentrate from processed manure as fertiliser. Wageningen, Alterra Wageningen UR (University & Research centre), Alterra report 2650. 36 pp. http://edepot.wur.nl/352930		Ν			No raw data, only NRFV ranges, no CY, interesting bibliography to be used	Excluded

BE	janv-18	Bemestingsproeven protocol 022018	Ν	Ν	Not in English (in Dutch)	Excluded
BE	janv-18 août-18	Brochure-Veldproeven Ehlert, P.A.I. & P. Hoeksma, 2011. Landbouwkundige en milieukundige perspectieven van mineralenconcentraten. Deskstudie in het kader van d Pilots Mineralenconcentraten. Alterra rapport 2185, Alterra, Wageningen, 76 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/178 75	e	N	Not in English (in Dutch) Not in English (in Dutch)	Excluded
BE	août-18	Ehlert, P.A.I., J. Nelemans & G.L. Velthof 2012. Stikstofwerking van mineralenconcentraten. Stikstofwerkingscoëfficiënten en verliezen door denitrificatie en stikstofimmobilisatie bepaald onder gecontroleerde omstandigheden. Alterra rapport 2314 Alterra, Wageningen, 100 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/235 03		Ν	Not in English (in Dutch)	Excluded
BE	août-18	Ehlert, P.A.I., P. Hoeksma & G.L. Velthof, 2009. Anorganische en organische microverontreinigingen in mineralenconcentraten. Resultaten van de eerste verkenningen. Rapport 256. Animal Sciences Group, Wageningen, 17 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/104- 1		Ν	Not in English (in Dutch)	Excluded
BE	août-18	Geel, van W., W. van den Berg & W. van Dijk, 2011. Stikstofwerking van mineralenconcentraten bij aardappelen. Verslag van veldonderzoek in 2009 en 2010. Praktijkonderzoek Plant & Omgeving, Wageningen. PPO-publicatie 475, 68 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1770 80)	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Geel, van W., W. van den Berg, W. van Dijk & R. Wustman, 2011. Aanvullend onderzoek mineralenconcentraten 2009-2010 op bouwland en grasland. Samenvatting van de resultaten uit de veldproeven en bepaling van de stikstofwerking. Praktijkonderzoek Plant & Omgeving, Wageningen. 40 http://library.wur.nl/WebQuery/wurpubs/fulltext/163 85		Ν	Not in English (in Dutch)	Excluded
BE	août-18	Hoeksma P. & F.E. Buisonjé, 2012. Mineralenconcentraten uit dierlijke mest. Monitoring 2011. Report Livestock Research 626, Lelystad, The Netherlands. http://library.wur.nl/WebQuery/wurpubs/fulltext/262 14)	Ν	Not in English (in Dutch)	Excluded

BE	août-18	Hoeksma, P. and F.E de Buisonjé, 2015. Production of mineral concentrates from animal manure using reverse osmosis; Monitoring of pilot plants in 2012 - 2014. Lelystad, Wageningen UR (University & Research centre) Livestock Research, Livestock Research Report 858. http://edepot.wur.nl/364053	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Hoeksma, P., F.E. de Buisonjé, P.A.I. Ehlert & J.H. Horrevorts, 2011. Mineralenconcentraten uit dierlijke mest. Monitoring in het kader van de pilot mineralenconcentraten. Wageningen UR Livestock Research, Rapport 481, 58 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1771 53	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Holshof G. and J.C. van Middelkoop, 2014. Stikstofwerking van mineralenconcentraten op grasland. Veldproeven 2012 en overall analyse. Report WUR Livestock Research 769, Wageningen (In Dutch). http://library.wur.nl/WebQuery/wurpubs/fulltext/3196 36	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Hoop, de J.G., C.H.G. Daatselaar, G.J. Doornewaard & N.C. Tomson, 2011. Mineralenconcentraten uit mest; Economische analyse en gebruikerservaringen uit de pilots mestverwerking in 2009 en 2010. LEI-Rapport 2011 - 030, LEI, Den Haag, 68 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1771 08	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Huijsmans, J.F.M. & J.M.G. Hol, 2011. Ammoniakemissie bij toediening van mineralenconcentraat op beteeld bouwland en grasland. Plant Research International rapport 387, Wageningen, 26 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1786 70	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Lesschen, J.P., I. Staritsky and G.L. Velthof, 2011. Assessment of effects of large scale use of mineral concentrates in the Netherlands; Effects on nutrient flows and emissions. Wageningen, Alterra, Report 2247. (In Dutch). http://library.wur.nl/WebQuery/wurpubs/fulltext/1916 58	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Middelkoop, J.C., van & G. Holshof, 2011. Stikstofwerking van mineralenconcentraten op grasland; Veldproeven 2009 en 2010. Wageningen UR Livestock Research rapport 475, 46 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1771 50	Ν	Not in English (in Dutch)	Excluded

BE	août-18	Middelkoop, J.C., van & G. Holshof, 2012. Stikstofwerking van mineralenconcentraten op grasland. Wageningen UR Livestock Research rapport 643, 51 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/2393 36	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Rietra, R.P.J.J. and G.L. Velthof, 2014. Stikstofwerking van mineralenconcentraat onder gecontroleerde omstandigheden; Effecten van aanzuren, vocht en toedieningstechniek. Alterra report 2518, Wageningen. http://library.wur.nl/WebQuery/wurpubs/fulltext/3099 54	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Schils, R., R. Geerts, J. Oenema, K. Verloop, F. Assinck en G.L. Velthof, 2014. Effect van bemesting met mineralenconcentraat op het nitraatgehalte van grondwater. Verkennend onderzoek in het kader van de Pilot Mineralenconcentraten. Alterra report 2570, Wageningen. http://library.wur.nl/WebQuery/wurpubs/fulltext/3283 78	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Schröder, J.J. D. Uenk & W. de Visser, 2010. De beschikbaarheid van fosfaat uit de dikke fractie van gescheiden drijfmest. Nota 661, Plant Research International, Wageningen, 9 p. http://edepot.wur.nl/178671	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Schröder, J.J., D. Uenk, W. de Visser, F.J. de Ruijter, F. Assinck, G.L. Velthof & W. van Dijk, 2011. Stikstofwerking van organische meststoffen op bouwland -resultaten van veldonderzoek in Wageningen in 2010. Tussentijdse rapportage. Plant Research International, Wageningen. http://edepot.wur.nl/178677	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Slabbekorn, M., 2011. Aanvullend onderzoek mineralenconcentraten 2009-2010 op bouwland en grasland Toepassing mineralenconcentraat in consumptieaardappelen locatie Westmaas, 2010. Praktijkonderzoek Plant & Omgeving, PPO nr. 32 501 793 00. http://library.wur.nl/WebQuery/wurpubs/fulltext/1636 96	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Velthof G.L. & E. Hummelink, 2011. Ammoniak- en lachgasemissie na toediening van mineralencon- centraten. Resultaten van laboratoriumproeven in het kader van de Pilot Mineralenconcentraten. Alterra- rapport 2180, Alterra, Wageningen. 46 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1769 16	Ν	Not in English (in Dutch)	Excluded

BE	août-18	Velthof G.L., 2011. Synthese van het onderzoek in het kader van de Pilot Mineralenconcentraten. Alterra- rapport 2211. ISSN 1566-7197. http://library.wur.nl/WebQuery/wurpubs/fulltext/1783 02	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Verloop, J, H. van den Akker & B. Meerkerk, 2011. Mineralenconcentraten op het melkveebedrijf en akkerbouwbedrijf; Praktijkdemo Pilot Mineralenconcentraten. Plant Research International, rapport 340. http://library.wur.nl/WebQuery/wurpubs/fulltext/1581 57	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Verloop, J. & B. Meerkerk, 2011. Gebruik van mineralenconcentraten Melkveehouderij, Aandachtspunten en aanwijzingen. Rapport Koeien en Kansen nr. Februari 2011, Rapport Plant Research International nr. 378, http://library.wur.nl/WebQuery/wurpubs/fulltext/1662 19	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Verloop, J. & H. van den Akker, 2011. Mineralenconcentraten op het melkveebedrijf en het akker-bouwbedrijf; knelpunten en mogelijkheden verkend op bedrijfsniveau , 2009 en 2010. Plant Research International rapport 393, Wageningen, 24 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1786 76	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Verloop, K. & R. Geerts, 2011. Aanvullend onderzoek mineralenconcentraten 2009-2010 op bouwland en grasland. Stikstofwerking in grasland bij aanwending apart en gemengd met drijfmest op, resultaten 2010. Plant Research International. Rapport 373. http://library.wur.nl/WebQuery/wurpubs/fulltext/1636 92	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Verstegen H., 2011. Aanvullend onderzoek mineralenconcentraten 2009-2010 op bouwland en grasland. Onderzoek Mineralenconcentraten in consumptieaardappelen en snijmaïs in ZO - NL 2010. Praktijkonderzoek Plant & Omgeving. PPO nr. 32 501 793 00. http://library.wur.nl/WebQuery/wurpubs/fulltext/1636 95	Ν	Not in English (in Dutch)	Excluded
BE	août-18	Vries, de J.W., P. Hoeksma & C.M. Groenestein, 2011. LevensCyclusAnalyse (LCA) Pilots Mineralen- concentraten. Wageningen UR Livestock Research, rapport 480, 77 p. http://library.wur.nl/WebQuery/wurpubs/fulltext/1771 51	Ν	Not in English (in Dutch)	Excluded

BE	août-18	Wijnolds, K.H., 2011. Aanvullend onderzoek mineralenconcentraten 2009 2010 op bouwland en grasland Rapportage van de resultaten van de veldproeven in wintertarwe (klei), zomergerst (zand) en zetmeelaardappelen (dalgrond) in NO Nederland in 2010. Praktijkonderzoek Plant & Omgeving B.V., PPO nr. 3250179200. http://library.wur.nl/WebQuery/wurpubs/fulltext/1636 93		Ν		Not in English (in Dutch)	Excluded
BE	août-18	4_Brochure-Veldproeven Q1 (De Clerq, Michels & Meers (2015). Veldproeven met biogebaseerde meststoffen)		Ν		Not in English (in Flamish)	Excluded
BE	août-18	Askri, Amira, Patricia Laville, Anne Trémier, Sabine Houot, 2016. Influence of Origin and Post-treatment on Greenhouse Gas Emissions After Anaerobic Digestate Application to Soil. Waste Biomass Valor (2016) N 7:293–306. DOI 10.1007/s12649-015-9452-6. https://link.springer.com/content/pdf/10.1007%2Fs126 49-015-9452-6.pdf	Ν			Processing methods and air emissions	Excluded
BE	août-18	Tampio, Elina, Sanna Marttinen and Jukka Rintala, 2016. Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. Journal of Cleaner Production 125: 22-32. http://dx.doi.org/10.1016/j.jclepro.2016.03.127	Ν			Processing methods and product characterisation	Excluded
BE	janv-18	Annex1 proposal from the biorefine cluster - Nutrient N Recycling Community	Ν			Proposal for subcontracted work: EU projects analysis	Excluded
BE	août-18	Velthof, G.L., P. Hoeksma, J.J. Schröder, J.C. van Middelkoop, W. van Geel, P.A.I. Ehlert, G. Holshof, G. Klop and J.P. Lesschen, 2013. Agronomic potential of mineral concentrate from processed manure as fertiliser. Proceedings of the International Fertilizer Society 716. www.fertiliser-society.org	Ν			Same as Velthof, G.L., 2015. Mineral concentrate from processed manure as fertiliser. Wageningen, Alterra Wageningen UR (University & Research centre), Alter report 2650. 36 pp. http://edepot.wur.nl/352930	
BE	janv-18	JRC studie processed manure suggestions of Flanders to	Ν			Suggestions from BE for the SAFEMANURE project	Excluded
DE	janv-18	EC and JRC agriculture-07-00001	N		N	About P-fertilisers	Excluded
DE	janv-18	Gaerrestaufbereitung N		Ν		Not in English (in German)	Excluded
DK	août-18	Olga Popovic, Maibritt Hjorth & Lars Stoumann Jensen (2012): "Phosphorus, copper and zinc in solid and liquid fractions from full-scale and laboratory-separated pig slurry"	Ν		N	About P-fertilisers	Excluded
DK	août-18	David Fangueiro, Henrique Ribeiro, Ernesto Vasconcelos, João Coutinho, Fernanda Cabral (2009): "Treatment by acidification followed by solid–liquid separation affects slurry and slurry fractions composition and their potential of N mineralization"	Ν			No CY, NU data	Excluded
DK	août-18	David Fangueiro, Maibritt Hjorth, Fabrizio Gioelli (2015): "Acidification of animal slurry– a review"	N			No CY, NU data	Excluded
DK	janv-18	Normtal 2017		Ν		Not in English (in Danish)	Excluded
	,						

DK	août-18	M. Hjorth, A. M. Nielsen, T. Nyord, M. N. Hansen, P. Nissen, S. G. Sommer (2009): "Nutrient value, odour emission and energy production of manure as influenced by anaerobic digestion and separation"		Ν		Processing methods and air emissions	Excluded
DK	août-18	Karin Peters, Maibritt Hjorth, Lars Stoumann Jensen and Jakob Magid (2010): "Carbon, Nitrogen, and Phosphoru: Distribution in Particle Size–Fractionated Separated Pig and Cattle Slurry"	1 ⁵ N	Ν		Processing methods and product characterisation	Excluded
DK	août-18	Kurt Möller and Torsten Müller (2012): Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review		Ν		Processing methods and product characterisation	Excluded
DK	août-18	Maibritt Hjorth, K. V. Christensen, M. L. Christensen, Sven G. Sommer (2011): "Solid–Liquid Separation of Animal Slurry in Theory and Practice"	Ν	Ν		Processing methods and product characterisation	Excluded
DK	août-18	S. G. Sommer, M. Hjorth, J. J. Leahy , K. Zhu (2014): "Pig slurry characteristics, nutrient balance and biogas production as affected by separation and acidification"		Ν		Processing methods and product characterisation	Excluded
DK	août-18	P. Sørensen, G. H. Rubæk (2011): "Leaching of nitrate and phosphorus after autumn and spring application of separated solid animal manures to winter wheat"	Ν	Υ		Solid fractions and anaerobic digestion. Experimental design with Mineral Fertiliser treatment for all.	Excluded
DK	août-18	B. Amon, V. Kryvoruchko, T. Amon, S. Zechmeister- Boltenstern (2006): "Methane, nitrous oxide and ammonia emissions during storage and after applicatior of dairy cattle slurry and influence of slurry treatment"	1	Ν		Storage and air emissions	Excluded
ESPP	août-18	ManureEcoMine trace contaminants report	Ν	Ν		About antibiotics in processed maure	Excluded
ESPP	janv-19	Downing, T., D. Sullivan, J. Hart, and M. Gamroth. 2017. Manure Application Rates for Forage Production. Oregon State University Extension EM8585. https://catalog.extension.oregonstate.edu/em8585	N	Ν		About application rates	Excluded
ESPP	janv-19	Sullivan, D., and C. Cogger. 2012. Post-Harvest Soil Nitrate Testing for Manured Cropping Systems West of the Cascades. Oregon State University Extension EM8832. https://catalog.extension.oregonstate.edu/em8832	Ν	Ν		About application rates	Excluded
ESPP	déc-18	Scaglia et al. sci tot.pdf	Ν	Ν	Ν	About biostimulants	Excluded
ESPP	janv-19	Bary, A., and J. Harrison. 2017. Date, Rate and Place: The Field Book for Dairy Manure Applicators. Pacific Northwest Extension Publication PNW506 http://cru.cahe.wsu.edu/CEPublications/PNW506/PNW 506.pdf	Ν	Ν		About manure management	Excluded
ESPP	déc-18	Ori et al., Sci Totla Environm. 2018.pdf		N		About odour emissions	Excluded
ESPP	déc-18	Orzi et al., Sci. totola environm - 2015.pdf		Ν		About odour emissions and pathogen content	Excluded
ESPP	août-18	Daumer Benne and Guiziou 2003		Ν	Ν	About P-fertilisers	Excluded
ESPP	août-18	Horta P availability manures 2015	Ν	Ν	Ν	About P-fertilisers	Excluded
ESPP	août-18	Johnson 2011 Effect of dairy manure slurry application in a no-till system	Ν	Ν	Ν	About P-fertilisers	Excluded
ESPP	août-18	Liang Manure boichar P availabirity 2014	Ν	Ν	Ν	About P-fertilisers	Excluded
ESPP	août-18	Schoumanns P-recovery manure 3-2014	Ν	Ν	Ν	About P-fertilisers	Excluded

ESPP	août-18	Schoumans Alterra report 2158 - 2010 P-recovery manures	Ν	Ν	Ν	About P-fertilisers	Excluded
ESPP	déc-18	Brod NBIO review manure based fertilisers 2018.pdf	N	N	N	About P-fertilisers	Excluded
ESPP	déc-18	Römer Fertiliser effect recyled products 2018.pdf		Ν	Ν	About P-fertilisers	Excluded
ESPP	déc-18	Weaver 1994 struvite leaching.pdf		N	N	About P-fertilisers	Excluded
		ADHB LINK Targeted P report UK 2016 "Improving the					
ESPP	janv-19	sustainability of phosphorus use in arable farming- 'Targeted P' "		Ν	Ν	About P-fertilisers	Excluded
ESPP	janv-19	Ehmann Bilbao Recovered P fertilisers 2018		N	N	About P-fertilisers	Excluded
ESPP	janv-19	Ehmann A. et al., Phosphates recycled from semi-liquid manure and digestate are suitable alternative fertilizers for ornamentals, Scientia Horticulturae 243 (2019) 440–450 https://doi.org/10.1016/j.scienta.2018.08.052	Y	Ν	Ν	About P-fertilisers	Excluded
ESPP	janv-19	Collins, H.P., E. Kimura, C.S. Frear, and C.E. Kruger. 2016. Phosphorus Uptake by Potato from Fertilizers Recovered from Anaerobic Digestion. Agronomy Journal 108(5):2036.		Ν	Ν	About P-fertilisers	Excluded
ESPP	déc-18	Tambone et al., 2017_BITE.pdf	Ν	N		About product characteristics	Excluded
ESPP	déc-18	Tambone et al., 2010.pdf	N	N		About product characteristics	Excluded
ESPP	déc-18	Tambone et al 20091 B & T.pdf	Ν	N		About product characteristics	Excluded
ESPP	déc-18	Rothbaum long term leaching struvite 1976.pdf	N	Ν		About product characteristics	Excluded
ESPP	janv-19	Latifian Struvite-based-fertilizer properties 2012		Ν		About product characteristics	Excluded
ESPP	janv-19	Rahman Liu Struvite recovery 2011		N		About product characteristics	Excluded
ESPP	janv-19	Rothman Rohde Struvite long term leaching 1976		N		About product characteristics	Excluded
ESPP	janv-19	Sullivan, D. 2015. Estimating Plant-Available Nitrogen from Manure. Oregon State University Extension Publication EM8954-E. https://catalog.extension.oregonstate.edu/em8954	Ν	Ν		About product characteristics	Excluded
ESPP	août-18	Bio AMEC Manure BPS OG ENVI 2014	N	N		About spreading emissions	Excluded
ESPP	août-18	Rodriguez-Navas Manure digestate steroid hormones 2013	N	N		About steroides in processed maure	Excluded
ESPP	août-18	Gros Girona pharmaceuticals manure abstract	Ν	N		About veterinary pharmaceuticals	Excluded
ESPP	janv-19	Ahmed Struvite fertiliser performance 2018	N	N		Contains maybe useful references	Excluded
ESPP	déc-18	Gong manure struvite fertiliser efficiency.pdf	N	Y		Data on CY, no NU data, no mineral reference	Excluded
ESPP	janv-19	Bary, A., C. Cogger, and D. Sullivan. 2016. Fertilizing with Manure and Other Organic Amendments. Pacific Northwest Extension Publication PNW533. https://catalog.extension.oregonstate.edu/pnw533		N		Good general information	Excluded
ESPP	août-18	ManureEcoMine project 11-2013	N	N	Ν	Job offer	Excluded
ESPP	août-18	Vries, de J.W., C.M. Groenestein and I.J.M. De Boer (2012) Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. Journal of Environmental Management 102, 173-183	1.4	N	IN	LCA on manure processing	Excluded
ESPP	août-18	Schils, R.L.M., R. Postma, D. van Rotterdam, K.B. Zwart (205) Agronomic and environmental consequences of using liquid mineral concentrates on arable farms. Journal of the Science of Food and Agriculture 95, 3015–3024.		N		No CY, NU data	Excluded
ESPP	août-18	ARBOR nutrient_recovery_from_digestate 29-4-2013 PR	ΙY	Ν		No raw data	Excluded

ESPP	août-18	ARBOR report June 2015	Y	N			No raw data	Excluded
		Klop, G, G. L. Velthof & J.W. van Groenigen (2012).						
		Application technique affects the potential of mineral						
ESPP	août-18	concentrates from livestock manure to replace inorgan	ic Y	Υ	Υ	Y	Already included in the meta-analysis	Included
		nitrogen fertilizer. Soil Use and Management, Volume						
		28, Issue 4, pages 468–477. Velthof, G.L., (2011). Synthesis of the research						
		within the framework of the Mineral Concentrate	S				No raw data, only NRFV ranges, no CY, interesting	
ESPP	août-18	Pilot. Alterra report 2224, Wageningen, The	Ŷ	N			bibliography to be used	Excluded
		Netherlands						
ESPP	août-18	Velthof, G.L., (2012). Mineral Concentrates Pilot synthesis of the results of 2011. Alterra report		N			No raw data, only NRFV ranges, no CY, interesting	Excluded
LJFF	a001-10	2363. Wageningen, The Netherlands.	1	IN IN			bibliography to be used	Excluded
		Middelkoop, van J.C. & G. Holshof (2017) Nitrogen						
		Fertilizer Replacement Value of Concentrated Liquid						
ESPP	août-18	Fraction of Separated Pig Slurry Applied to Grassland.	Y	Y	Y	Y	Already included in the meta-analysis	Included
		Communications in Soil Science and Plant Analysis 48,						
		1132-1144. Velthof, G.L., (2015). Mineral concentrate from						
5000	AL 40	processed manure as fertiliser. Wageningen,					No raw data, only NRFV ranges, no CY, interesting	
ESPP	août-18	Alterra Wageningen UR, Alterra report 2650. 36	Y	N			bibliography to be used	Excluded
	A . AB	pp.						
ESPP ESPP	août-18	Helcom & LUKE advanced manure standards	N N	N		N	Not about processed manure	Excluded
ESPP	déc-18	Oliveira struvite fertiliser potential Naxos 2018.pdf		IN		N	Not about processed manure	Excluded
		Schröder, J.J., W. de Visser, F. B. T. Assinck & G						
ESPP	août-18	L. Velthof (2013). Effects of short-term nitrogen supply from livestock manures and cover crops		Y	Y	Y	Already included in the meta-analysis	Included
		on silage maize production and nitrate leaching.						
		Soil Use and Management 29, 151–160.						
		Schröder, J.J., W. De Visser, F.B.T. Assinck, G.L						
		Velthof, W. Van Geel, & W. Van Dijk (2014).						
ESPP	août-18	Nitrogen fertilizer replacement value of the liquid		?	?	?	requested via Research Gate	No access to
		fraction of separated livestock slurries applied to)			·	·	pdf
		potatoes and silage maize. Communications in Soil Science and Plant Analysis 45, 73-85.						
ESPP	déc-18	Sena LCA struvite 2018.PDF	N	N		Ν	Not about processed manure	Excluded
ESPP	janv-19	Ryu Evaluation struvite Chinese cabbage 2012				N	Not about processed manure	Excluded
		Ehlert, P.A.I. & P. Hoeksma, (2011).						
		Landbouwkundige en milieukundige						
ESPP	août-18	perspectieven van mineralenconcentraten. Deskstudie in het kader van de Pilots			Ν		Not in English (in Dutch)	Excluded
		Mineralenconcentraten. Alterra rapport 2185,						
		Alterra, Wageningen, 76 p.						
		Ehlert, P.A.I., J. Nelemans & G.L. Velthof (2012)						
		Stikstofwerking van mineralenconcentraten.						
ESPP	août-18	Stikstofwerkingscoëfficiënten en verliezen door			Ν		Not in English (in Dutch)	Excluded
ESPP	audt-18	denitrificatie en stikstofimmobilisatie bepaald			IN		Not in English (in Dutch)	Excluded
		onder gecontroleerde omstandigheden. Alterra						
		rapport 2314, Alterra, Wageningen, 100 p						

ESPP	août-18	Ehlert, P.A.I., P. Hoeksma & G.L. Velthof, (2009). Anorganische en organische microverontreinigingen in mineralenconcentraten. Resultaten van de eerste verkenningen. Rapport 256. Animal Sciences Group, Wageningen, 17 p.	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Geel, van W., W. van den Berg & W. van Dijk, (2011b). Stikstofwerking van mineralenconcentraten bij aardappelen. Verslag van veldonderzoek in 2009 en 2010. Praktijkonderzoek Plant & Omgeving, Wageningen. PPO-publicatie 475, 68 p.	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Geel, van W., W. van den Berg, W. van Dijk & R. Wustman, (2011a). Aanvullend onderzoek mineralenconcentraten 2009-2010 op bouwland en grasland. Samenvatting van de resultaten uit de veldproeven en bepaling van de stikstofwerking. Praktijkonderzoek Plant & Omgeving, Wageningen. 40 p.	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Hoeksma P. & F.E. Buisonjé (2012). Mineralenconcentraten uit dierlijke mest. Monitoring 2011. Report Livestock Research 626,	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Lelystad, The Netherlands. Hoeksma, P. and F.E de Buisonjé (2015) Production of mineral concentrates from animal manure using reverse osmosis; Monitoring of pilot plants in 2012 - 2014. Lelystad, Wageningen UR (University & Research centre) Livestock Research, Livestock Research Report 858.	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Hoeksma, P., F.E. de Buisonjé, P.A.I. Ehlert & J.H. Horrevorts (2011). Mineralenconcentraten uit dierlijke mest. Monitoring in het kader van de pilot mineralenconcentraten. Wageningen UR Livestock Research, Rapport 481, 58 p.	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Holshof G. and J.C. van Middelkoop (2014) Stikstofwerking van mineralenconcentraten op grasland. Veldproeven 2012 en overall analyse. Report WUR Livestock Research 769, Wageningen (In Dutch).	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Hoop, de J.G., C.H.G. Daatselaar, G.J. Doornewaard & N.C. Tomson (2011). Mineralenconcentraten uit mest; Economische analyse en gebruikerservaringen uit de pilots mestverwerking in 2009 en 2010. LEI-Rapport 2011 - 030, LEI, Den Haag, 68 p.	Ν	Not in English (in Dutch)	Excluded
ESPP	août-18	Huijsmans, J.F.M. & J.M.G. Hol (2011). Ammoniakemissie bij toediening van mineralenconcentraat op beteeld bouwland en grasland. Plant Research International rapport 387, Wageningen, 26 p.	Ν	Not in English (in Dutch)	Excluded

ESPP	août-18	Lesschen, J.P., I. Staritsky and G.L. Velthof (2011) Assessment of effects of large scale use of mineral concentrates in the Netherlands; Effects on nutrient flows and emissions. Wageningen, Alterra, Report 2247. (In Dutch).		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Middelkoop, J.C., van & G. Holshof (2011). Stikstofwerking van mineralenconcentraten op grasland; Veldproeven 2009 en 2010. Wageningen UR Livestock Research rapport 475, 46 p.		N		Not in English (in Dutch)	Excluded
ESPP	août-18	Middelkoop, J.C., van & G. Holshof (2012). Stikstofwerking van mineralenconcentraten op grasland. Wageningen UR Livestock Research rapport 643, 51 p.		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Rietra, R.P.J.J. and G.L. Velthof (2014) Stikstofwerking van mineralenconcentraat onder gecontroleerde omstandigheden; Effecten van aanzuren, vocht en toedieningstechniek. Alterra report 2518, Wageningen.		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Schils, R., R. Geerts, J. Oenema, K. Verloop, F. Assinck en G.L. Velthof (2014) Effect van bemesting met mineralenconcentraat op het nitraatgehalte van grondwater. Verkennend onderzoek in het kader van de Pilot Mineralenconcentraten. Alterra report 2570, Wageningen.		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Schröder, J.J. D. Uenk & W. de Visser (2010). De beschikbaarheid van fosfaat uit de dikke fractie van gescheiden drijfmest. Nota 661, Plant Research International, Wageningen, 9 p.		N		Not in English (in Dutch)	Excluded
ESPP	août-18	Schröder, J.J., D. Uenk, W. de Visser, F.J. de Ruijter, F. Assinck, G.L. Velthof & W. van Dijk (2011). Stikstofwerking van organische meststoffen op bouwland -resultaten van veldonderzoek in Wageningen in 2010. Tussentijdse rapportage. Plant Research International, Wageningen.		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Velthof G.L. & E. Hummelink (2011). Ammoniak- en lachgasemissie na toediening van mineralenconcentraten. Resultaten van laboratoriumproeven in het kader van de Pilot Mineralenconcentraten. Alterra-rapport 2180, Alterra, Wageningen. 46 p.		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Verloop, J. & H. van den Akker (2011). Mineralenconcentraten op het melkveebedrijf en het akkerbouwbedrijf; knelpunten en mogelijkheden verkend op bedrijfsniveau, 2009 en 2010. Plant Research International rapport 393, Wageningen, 24 p.		Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Vries, de J.W., P. Hoeksma & C.M. Groenestein (2011). LevensCyclusAnalyse (LCA) Pilots Mineralenconcentraten. Wageningen UR Livestoc Research, rapport 480, 77 p.	(Ν		Not in English (in Dutch)	Excluded
ESPP	août-18	Riva digestates as fertilisers 2016	Y Y	Y	Y	Already included in the meta-analysis	Included

ESPP	déc-18	Riva et al., 2016, Sci Total Environmpdf	Υ	Υ	Y	Υ	Already included in the meta-analysis	Included
ESPP	août-18	Fear WSU manure processing cost review EM112E 2014	N	Ν			Processing methods and product characterisation	Excluded
ESPP	août-18	Hansen Manure separation steriod hormones 2015	N	Ν			Processing methods and product characterisation	Excluded
ESPP	août-18	Ledda N & water recovery slurries ultrafiltration osmosis stripping 2013	^S N	Ν			Processing methods and product characterisation	Excluded
ESPP	août-18	ManureEcoMine contaminants 04.2	Ν	N			Processing methods and product characterisation	Excluded
ESPP	août-18	Orzi Mesophilic AD pathogen reduction 2015	Ν	Ν			Processing methods and product characterisation	Excluded
ESPP	août-18	Shi Nutrient Recovery Manure Digestate review 2018	Ν	N			Processing methods and product characterisation	Excluded
ESPP	août-18	wsu FactSheet FS136E 2014	N	N			Processing methods and product characterisation	Excluded
ESPP	déc-18	Frear Ammonia recovery manure review 2018.pdf	N	N			Processing methods and product characterisation	Excluded
ESPP	janv-19	Bridger metal ammonium fertilisers 1962		Ν		Ν	No raw data on the experiment of MAP used as source of Nitrogen and Phosphorous. MAP origin not clear (may not be about processed manure)	/ Excluded
ESPP	janv-19	Lunt struvite availabirrty in soil 1964				Ν	MAP origin not clear (may not be about processed manure)	Excluded
ESPP	janv-19	Ryu swine recovered struvite evaluation 2016	Y	Y	Y	Y	MAP	To be Included
ESPP	janv-19	Terman 1965 struvite leaching				Ν	MAP origin not clear (may not be about processed manure)	Excluded
ESPP	janv-19	Arancon, N.Q., C.A. Edwards, P. Bierman, J.D. Metzger, and C. Lucht. 2005. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia 49(4):297–306 https://doi.org/10.1016/j.pedobi.2005.02.001	² N	Y	Y	Y	Cow manure vermicompost - No control	Excluded
ESPP	août-18	Velthof, G.L., P. Hoeksma, J.J. Schröder, J.C. var Middelkoop, W. van Geel, P.A.I. Ehlert, G. Holshof, G. Klop and J.P. Lesschen (2013). Agronomic potential of mineral concentrate from processed manure as fertiliser. Proceedings of the International Fertilizer Society 716.		Ν			Same as Velthof, G.L., 2015. Mineral concentrate from processed manure as fertiliser. Wageningen, Alterra Wageningen UR (University & Research centre), Alterra report 2650. 36 pp. http://edepot.wur.nl/352930	Excluded
ESPP	janv-19	Saunders, O.E., A.M. Fortuna, J.H. Harrison, E. Whitefield, C.G. Cogger, A.C. Kennedy, and A.I. Bary. 2012. Comparison of raw dairy manure slurry and anaerobically digested slurry as N sources for grass forage production. International Journal of Agronomy: 101074. https://doi.org/10.1155/2012/101074	N	Y	Y	Y	Error in the experiment the control is not 0 kgN/ha.	Excluded
ESPP	janv-19	Song, X., M. Liu, D. Wu, B.S. Griffiths, J. Jiao, H. Li, and F. Hu. 2015. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology 89:25–34 https://doi.org/10.1016/j.apsoil.2015.01.005	Y	Y	Y	Y	Vermicompost	To be included
ESPP	janv-19	Tejada, M., and J.L. González. 2009. Application of two vermicomposts on a rice crop: effects on soil biological properties and rice quality and yield. Agronomy Journal 101(2):336–344 http://dx.doi.org/10.2134/agronj2008.0211	?	?	?	?	requested via Research Gate	No access to pdf
FI	janv-18	mtttiede29	Ν	Ν			Processing methods and product characterisation	Excluded
FR	janv-18	137b1b06ffc7e09ffbe13afc7a077341	Ν	Ν	Ν		Not in English (in French)	Excluded

FMJam.3.13Jam.3.13Jam.3.13Moti meghin (n rench)FMjam.3.13Jaulor 2015/2012/JB220-5621/JB220-521/JB220NNNNFRjam.3.13Jaulor 2015/2012/JB220-521/JB220-521/JB220NNNNFRjam.3.13Jaulor 2015/2012/JB220-521/JB220-521/JB220-521/JB220NNNNHIjam.3.13HOSCNA-STELLANDELLINETTIC Association 2016/2017/JB220-521/JB220-5									
Fin pan-28 obsolve System Part Regulation Freench Mu pan-18 NOSON SysTem AssOciutizity Associutity Associutizity Ass	FR	janv-18	17aef1aba067c1dd60ea83749d74ceea	Ν	N	Ν		Not in English (in French)	Excluded
HIMJan-18OPAGUE SONY-SYSTEM-BIOCURIENProduct EndownerProduct EndownerHIMJan-18EMPROFESSATETO Angel reportNProduct EndownerProduct EndownerHIMJan-18IPAN-185IPAN-185NNNHIMJan-18Genel ref 12,211NNNNHIMJan-18Genel ref 12,211NNNNHIMJan-18Genel ref 12,111NNNNHIMJan-18Genel ref 12,111NNNNHIMJan-18Genel ref 12,111NNNNHIMJan-18Genel ref 14,111NNNNHIMJan-18Gene ref 14,111NNNNHIMJan-18Antonic particity field fie	FR	janv-18	3a0ea7ccd43b9e4c291d822bcb5e2e7d	Ν	N	Ν		Not in English (in French)	Excluded
Huljan-18Velocie biologic biolo	FR	janv-18	db204449fd5b64a407557d68d3117640	Ν	N	Ν		Not in English (in French)	Excluded
Ujan-18jan-28 <td></td> <td>janv-18</td> <td>HOSOYA-SYSTEM-BROCHURE</td> <td></td> <td></td> <td></td> <td></td> <td>Product brochure</td> <td>Excluded</td>		janv-18	HOSOYA-SYSTEM-BROCHURE					Product brochure	Excluded
U parce 18 prove is lotted in staturation 2008 N N N parce 18 lotted in 12, 2011 N N N N N parce 18 cell of 23, 72 and future occurs faculis in three talls in concentrate talls review down and the position of future talls review down and the position of future talls review down and the position of future talls review down and tall factor 12, 104 lerror, Assessing the role of the position of future talls review down and tall factor 12, 104 lerror, Assessing the role of the position of future talls review down and tall factor 12, 104 lerror, Assessing the role of the position of future talls review down and tall factor 12, 104 lerror, Assessing the role of tall review down and tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing the role of tall factor 12, 104 lerror, Assessing tall factor 12, 104 lerror, Assessing tall factor 12, 104 lerror, Assessing the role of tall factor 14, 104 lerror, Assessing tall factor, 104 lerror, Assessing tall factor, 104 lerror, Assessin	IU	janv-18	TERMEKISMERTETO Angol nyelvű	Ν				Product brochure	Excluded
ipro:18 ipro:18 iorgan_australan_2008 N N Ammonia emissions ipro:18 Gledit edit, 2011 N N N ipro:18 Gledit edit, 2011 N N N ipro:18 color 057 Pro/18 (color 057 P	IU	janv-18	Velencei bevizsgálás Bioorganic	Ν				Product brochure	Excluded
immuta Geneling al., 2011 N N N immuta ALLEGATO 1, Cansport and explosition of Schercher Justice Provides E.Choli immuta Coli 517 H7 and Entreococcis facealis in three Italian N E.Choli immuta ALLEGATO 1, Dal Ferra, Assessing the role of AtMission Provide Provides Modelling immuta ALLEGATO 1, Dal Ferra, Assessing the role of advisor abstracts 2016 N Modelling immuta ALMEGATO 2, SIDE Assessing the role of advisor abstract Size Assessing the role of advisor abstract Size Program bastracts 2016 N Modelling immuta ALMEGATO 2, SIDE Assessing the role of advisor abstract Size Program bastract Program bastract Program bastract Program bastract Program bastract Program bastract Pr	IU	janv-18	Fenyvesi kutatás Institute.	Ν				Product characterisation	Excluded
ALLCATO 3, Transport and deposition of trajective iterations in three Itelian N E Chail Improve 30 Coll 0157 March Marconcurs facelis in three Itelian N E Chail Improve 30 ALLEGATO 3, Transport and Allegato 2, Differre Assessing the role of an antipation of the sessing three of antipations and three biochar, interview and the sessing three of antipations and three biochar, interview and the sessing three of antipations and three biochar, interview and the sessing three of antipations and three biochar, is condown and three biochar, is condown and three biochar, interview and the sessing three biochar, is condown and three antipations and three antipating three antinterview and three antipations and three a	Г	janv-18	journal_australian_2008					Ammonia emissions	Excluded
Impund Sing Sing Profession Sing Professing Professing Profession Sing Professing Professing Pro	Г	janv-18	Gioelli et al., 2011	Ν	N			Biogas potential	Excluded
janu-18 Allegato 2, jub Nitrogen abstracts 2016 N Modeling r janu-18 Allegato 2, jub Nitrogen abstracts 2016 N Nitrogen cycle scheme r août-18 ANNEX 2, BIOGAS2018, Extended abstracts Digestate100 N No comparitive study r janu-18 2016 Subbel (NHS from blockar / yidcotar, LDS N No CV, NU data r janu-18 2015 Subbel (NHS dato) limaure-blockar, jrn. Erv No CV, NU data No CV, NU data r janu-18 2015 Subbel (NHS dato) limaure-blockar, jrn. Erv N No CV, NU data r janu-18 2015 Subbel (NHS dato) limaure-blockar, jrn. Erv N No CV, NU data r janu-18 2015 Subbel (Ferliuling value of manure-blockar, jrn. Erv N No CV, NU data r janu-18 2015 Subbel (Ferliuling value of manure-blockar, jrn. Erv N Not about processed manure r janu-18 2015 Subbel (Ferliuling value of manure-blockar, jrn. Erv N N Not about processed manure r janu-18 Digetato 2004 Registration Registratin Registratin Registration Registration Registration R	г	janv-18	coli O157 H7 and Enterococcus faecalis in three Italian	Ν				E Choli	Excluded
août-18 ANKEX 1 N N Ntrogen cycle scheme août-18 ANKEX 2_BIOGASOIB_Extend bigstrate Digestate DO N No CY, NU data i janv-18 2015 Subedi NH3 from biochar hydrochar, ELSS N No CY, NU data i janv-18 2015 Subedi NH3 from biochar hydrochar, ELSS N No CY, NU data i janv-18 2015 Subedi NH3 from biochar hydrochar, ELSS N No CY, NU data i janv-18 2015 Subedi NH3 from biochar hydrochar, ELS N No CY, NU data i janv-18 2015 Subedi NH3 from biochar hydrochar, ELS N No CY, NU data i janv-18 2015 Subedi NH3 from biochar hydrochar, ELS N N N i janv-18 2017 Swattaro Legislation requirements and N N N N 2015 Subedi Fritiling Yubedi GHG and principal schema Y Y Y Pulgit dia anarobic digestate and mineral concentrate janv-18 2017 Swattaro Legislation requirements and N N N N N janv-18 2017 Swattaro Legislation requirements and N N N N N janv-18 ANKEX 3_ECD2013 N N N N		janv-18		Ν				Modelling	Excluded
aout-18 ANREX 2_BIGGAS2018_Extended abstract Digestate100 N No comparative study jarv-18 2008 Betrora SBB Pig slurry treatment N No CY, NU data jarv-18 2015 Subedi NF3 from biochar lyfrochar, ESS N No CY, NU data jarv-18 2015 Subedi NF3 from biochar lyfrochar, ESS N No CY, NU data jarv-18 2016 Subedi NF3 from biochar lyfrochar, ESS N No EY, NU data jarv-18 2016 Subedi NF3 from biochar lyfrochar, ESS N Not about processed manure 2016 Subedi Fertilizer value of manure-biochar, Sc of trotal Env N N Not about processed manure 2017 Subedi Fertilizer value of manure-biochar, Sc of trotal Env Y Y Y Y jarv-18 2017 Pampuro, Fertilizer value and GHG from solid fraction composted peliets, Jour of Agric Science fractian composted peliets, Jour of Agric Science jarv-18 N N Not in English (in Italian) jarv-18 Digestionofma N N N Position paper jarv-18 Coll Fance, Jour of Agric Science jarv-18 N N N Position paper jarv-18 Diactoic et al., 2017 POSITION PAPER signed N N N Position paper jarv-18 Diactoic et al., 2017 N N N Storage emissions j		janv-18	Allegato 2_19th Nitrogen abstracts 2016	Ν				Modelling	Excluded
janv-18 2008 Bertor SBB Pig skrry treatment N No CY, NU data janv-18 2015 Subedi FH3 from blochar lydrochar, LSS N No CY, NU data janv-18 2016 Subedi FH3 from blochar lydrochar, LSS N No CY, NU data janv-18 2016 Subedi FH3 from blochar lydrochar, LSS N No CY, NU data janv-18 2016 Subedi FH3 from blochar lydrochar, LSS N N No cY, NU data janv-18 2016 Subedi Fertilizing value of manure-blochar, Sc of y Y Y Y Uguid anaerobic digestate and mineral concentrate janv-18 2016 Subedi Fertilizing value of manure-blochar, Sc of y Y Y Y Uguid anaerobic digestate and mineral concentrate janv-18 2017 Panpuro, Fertilizer value and GHG from solid from solid fraction composted pellets, Jour of Agric Science Y Y Y Y P janv-18 ManuRESource 2017 POSITION PAPER signed N N N Position paper août-18 ANNEX 3_EO213 N N N Public opinion janv-18 Dial color of anaure treatments Jour Cleaner Frod N N Storage emissions janv-18 Dinuccio et al. 2008 N <td></td> <td>août-18</td> <td>ANNEX 1</td> <td>Ν</td> <td>N</td> <td></td> <td></td> <td>Nitrogen cycle scheme</td> <td>Excluded</td>		août-18	ANNEX 1	Ν	N			Nitrogen cycle scheme	Excluded
janv.18 2015 Subedi NIA from biochar hydrochar, EISS N No CY, NU data janv.18 2016 Subedi GHC and soil manure-biochar, Irn Env N No CY, NU data janv.18 2016 Subtadi GHC and soil manure-biochar, Irn Env N No CY, NU data janv.18 2016 Subtadi Friding value of manure-biochar, Sc of Total Env N No tabout processed manure janv.18 2017 Zavataro Review Manure L/A N N No tabout processed manure janv.18 2017 Zavataro Review Manure L/A N N No tabout processed manure janv.18 2017 Zavataro Review Manure L/A N N No tabout processed manure janv.18 2017 Dempuno, Fertilizer value and GHG from solid Y Y Y Polets janv.18 Digestato 100% biogasinforma N N No tra English (in talian) janv.18 Digestato 100% biogasinforma N N Postion paper janv.18 Digestato 100% biogasinforma N N Postion paper janv.18 Digestato 100% biogasinforma N N Postion paper janv.18 Discoto et al., 2017 POSITON PAPER signed N		août-18	ANNEX 2_BIOGAS2018_Extended abstract Digestate100	Ν				No comparative study	Excluded
r Join -18 Mngm No CY, NU data Mngm 2016 Subedi GHC and soli manure-biochar, Irn Env N No CY, NU data r Janv-18 2016 Zavattaro Legislation requirements and N strategies TF, L/A N Not about processed manure r Janv-18 2016 Subedi Fertilizing value of manure-biochar, Sc of Total Env Y Y Y Y r Janv-18 2017 Subadi Fertilizing value of manure-biochar, Sc of Total Env Y Y Y Y Y r Janv-18 2017 Fampuro, Fertilizer value and GHG from solid Fraction composted pellets, Jour of Agric Science Y Y Y Y Pellets r Janv-18 Digestation0x-Biogasinforma N N Not in English (in Italian) r Janv-18 ManuREsource 2017 POSITION PAPER signed N N Not in English (in talian) r Janv-18 ManuREsource 2017 POSITION PAPER signed N N Not in English (in talian) r Janv-18 Balsari et J., 2015 N N Storage emissions r Janv-18 Diractio et al., 2015 N Storage emissions Storage emissi	t	janv-18	2008 Bertora SBB Pig slurry treatment		N			No CY, NU data	Excluded
janv.18 Mgm N Not about processed manure janv.18 2016 Zavataro Legislation requirements and N strategies TF, ELA N N Not about processed manure janv.18 2017 Zavataro Review Manure ELA N N Not about processed manure janv.18 2015 Zavataro Legislation requirements and N strategies TF, ELA N N Not about processed manure janv.18 2017 Zavataro Review Manure ELA N N N Netabout processed manure janv.18 2015 Zavataro Review Manure ELA N N N Netabout processed manure janv.18 2015 Zavataro Review Manure ELA N N N Pelets janv.18 2015 Zavataro CoSTION PAPER Signed N N Not in English (in Italian) janv.18 Digestato 100% Eliogasinforma N N Not in English (in Italian) janv.18 ANNEX 3_BCD2013 N N Position paper caoùt-18 ANNEX 3_BCD2013 N N Strategies TF, ELA janv.18 Dinuccio et al., 2015 N Strategies TF, ELA janv.18 Dinuccio et al., 2012 N Strategies TF, ELA janv.18 Dinuccio et al., 2012 N Strategies Strategies TF, ELA janv.18		janv-18	2015 Subedi NH3 from biochar hydrochar, EJSS		N			No CY, NU data	Excluded
janv-18 strategies TF, EJA N Not about processed manure janv-18 2017 Zavataro Review Manure EJA N N N Not about processed manure janv-18 2016 Subdiel Fertilizing value of manure-biochar, Sc of Total Env Y Y Y Y Y Uiquid anaerobic digestate and mineral concentrate janv-18 2017 Pampuro, Fertilizer value and GHG from solid factor composted pellets, Jour of Agric Science Y Y Y Y Pellets janv-18 Digestato100%-Biogasinforma N N Not in English (in Italian) Not in English (in Italian) janv-18 Digestato100%-Biogasinforma N N Not in English (in Italian) Not in English (in Italian) janv-18 ManuREsource 2017 POSITION PAPER signed N N Not in English (in Italian) janv-18 Balsari et al., 2015 N N Not in English (in Italian) janv-18 Dinuccio et al., 2017 N N Storage emissions janv-18 Balsari et al., 2015 N Storage emissions Storage emissions janv-18 Dinuccio et al., 2015 N N Storage emissions <		janv-18			Ν			No CY, NU data	Excluded
2016 Subdedi Fertilizing value of manure-biochar, Sc of Total Env Y Y Y Y Uquid anaerobic digestate and mineral concentrate janv-18 2017 Pampuro, Fertilizer value and GHG from solid fraction composted pellets, Jour of Agric Science Y Y Y Pellets janv-18 Digestato100%-Biogasinforma N N Not in English (in Italian) janv-18 Digestato100%-Biogasinforma N N Position paper août-18 ANNEX 3_BCD2013 N N Powerpoint presentation that focuses on C02 emissions janv-18 2018 Hou et al Perception of manure treatments Jour Cleaner Prod N N Public opinion janv-18 Dinuccio et al., 2008 N Storage emissions Storage emissions janv-18 Dinuccio et al., 2015 N Storage emissions Project brochure janv-18 Dinuccio et al., 2012 N Storage emissions Project brochure janv-18 Dinuccio et al., 2015 N N Dinuccio et al., 2015 Dinuccio et al., 2015 Dinuccio et al., 2015 Dinuccio et al., 2015 N Dinuccio et al., 2015 Dinuccio et al., 2015 Dinuccio et al., 2015 N Dinucci		janv-18		Ν			Ν	Not about processed manure	Exclude
janv-18 Total Env Y		janv-18	2017 Zavattaro Review Manure EJA	Ν	N		Ν	Not about processed manure	Exclude
janv-18 fraction composted pellets, Jour of Agric Science Y Y Y Y Pellets janv-18 Digestato 100%-Biogasinforma N N Not in English (in Italian) janv-18 ManuREsource 2017 POSITION PAPER signed N N Position paper août-18 ANNEX 3_BCD2013 N N Powerpoint presentation that focuses on CO2 emissions janv-18 Cleaner Prod N N Public opinion cleaner Prod N Spreading device Spreading device janv-18 Dinuccio et al., 2015 N Storage emissions janv-18 Dinuccio et al., 2012 N Storage emissions J janv-18 Dinuccio et al., 2012 N Project brochure J janv-18 Dinuccio et al., 2012 N Database on composition of processed manure J août-18 Schils_et al-2015 N Edemissions L janv-18 Viethof.2015 N ICA on manure processing L janv-18 Klop_et_al-2012 N ICA on manure processing L janv-18 Klop_et_al-20		janv-18	• • • • • • • • • • • • • • • • • • •	Y	Υ	Y	Y	Liquid anaerobic digestate and mineral concentrate	Included
Image: Transport of the second of the sec	г	janv-18		Y	Y	Y	Y	Pellets	Included
août-18 ANNEX 3_BCD2013 N N N Powerpoint presentation that focuses on CO2 emissions r janv-18 2018 Hou et al Perception of manure treatments Jour Cleaner Prod N N N Public opinion r janv-18 Balsari et al., 2015 N Spreading device r janv-18 Balsari et al., 2015 N Spreading device r janv-18 Dinuccio et al., 2008 N Storage emissions r janv-18 Dinuccio et al., 2012 N Storage emissions r janv-18 Dinuccio et al., 2012 N Project brochure ubinotice and J., 2012 N Spreading device Storage emissions r janv-18 Dinuccio et al., 2012 N Project brochure ubinotice and J., 2015 N N Database on composition of processed manure ubinotice and Perception_Plant_Specifications N N Up anv-18 ganv-18 de Vries et al.2012 N Up anv-18 GHG ubinotice and perceptifications N N No CY, NU data ubinotice andelekoop and Holshof.201	Г	janv-18	Digestato100%-BiogasInforma	Ν		Ν		Not in English (in Italian)	Excluded
janv-18 2018 Hou et al Perception of manure treatments Jour Cleaner Prod N N Public opinion janv-18 Balsari et al., 2015 N Spreading device janv-18 Dinuccio et al., 2008 N Storage emissions janv-18 Dinuccio et al., 2012 N Storage emissions J janv-18 Percephone_project_flyer_LIST N Project brochure L janv-18 Schils_et_al-2015 N Database on composition of processed manure L janv-18 Schils_et_al-2015 N GHG L janv-18 Velthof.2015 N GHG L janv-18 Klop_et_al-2012 N Klop_et_al-2012 L janv-18 Velthof.2015 N Mineral concentrate but no comparative study L janv-18 Klop_et_al-2012 Y Y Y L janv-18 Velthof.2015 Y Y Y L janv-18 van Middelkoop and Holshof.2017 Y Y Y Mineral concentrate L janv-18 van Middelkoop and Holshof.2017 Y Y Y Mineral concentrate L janv-18 van Middelkoop and Holshof.2017<		janv-18	ManuREsource 2017 POSITION PAPER signed	Ν	N			Position paper	Excluded
Janv-18Cleaner ProdNNPublic Opinionjanv-18Balsari et al., 2015NSpreading devicejanv-18Dinuccio et al., 2008NStorage emissionsjanv-18Dinuccio et al., 2012NStorage emissionsjanv-18Dinuccio et al., 2012NStorage emissionsjanv-18Dinuccio et al., 2012NStorage emissionsjanv-18Ouestion 1-The Netherlands-NRR-products-SYSTEMIC 16-07-2018NProject brochurejanv-18Schils_et_al-2015NDatabase on composition of processed manurejanv-18Schils_et al.2012NGHGjanv-18Veries et al.2012NCCA on manure processingjanv-18Klop_et_al-2015NNineral concentrate but no comparative studyjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18Klop_et_al-2012YYYjanv-18		août-18	ANNEX 3_BCD2013	Ν	Ν			Powerpoint presentation that focuses on CO2 emission	ns Excluded
janv-18Dinuccio et al., 2008NStorage emissionsjanv-18Dinuccio et al., 2012NStorage emissionsUjanv-18Persephone_project_flyer_LISTNProject brochureLaoût-18Question 1-The Netherlands-NRR-products-SYSTEMIC- 16-07-2018NDatabase on composition of processed manureLjanv-18Schils_et_al-2015NGHGLjanv-18de Vries et al.2012NLCA on manure processingLjanv-18Velthof.2015NMineral concentrate but no comparative studyLjanv-18Klop_et_al-2012YYYLjanv-18van Middelkoop and Holshof.2017YYYLjanv-18van Middelkoop and Holshof.2017YYYLjanv-18The Dutch position on developing criteria for safe use of NNPosition paper	-	janv-18		Ν	Ν			Public opinion	Excluded
janv-18Dinuccio et al., 2012NStorage emissionsJ janv-18Persephone_project_flyer_LISTNProject brochureLaoût-18Question 1-The Netherlands-NRR-products-SYSTEMIC- 16-07-2018NNLjanv-18Schils_et_al-2015NGHGLjanv-18Velthof.2015NCA on manure processingLjanv-18Velthof.2015NMineral concentrate but no comparative studyLjanv-18Klop_et_al-2012YYYJ janv-18Klop_et_al-2012YYYLjanv-18van Middelkoop and Holshof.2017YYYLjanv-18The Dutch position on developing criteria for safe use of NNPosition paper		janv-18	Balsari et al., 2015	N				Spreading device	Exclude
janv-18 Persephone_project_flyer_LIST N Project brochure août-18 Question 1-The Netherlands-NRR-products-SYSTEMIC- 16-07-2018 N Database on composition of processed manure janv-18 Schils_et_al-2015 N GHG janv-18 de Vries et al.2012 N LCA on manure processing janv-18 Velthof.2015 N Mineral concentrate but no comparative study janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Mineral concentrate janv-18 The Dutch position on developing criteria for safe use of any Y Y Y Y Position paper		janv-18	Dinuccio et al., 2008	Ν				Storage emissions	Excluded
janv-18 Persephone_project_flyer_LIST N Project brochure août-18 Question 1-The Netherlands-NRR-products-SYSTEMIC- 16-07-2018 N Database on composition of processed manure janv-18 Schils_et_al-2015 N GHG janv-18 de Vries et al.2012 N LCA on manure processing janv-18 Velthof.2015 N Mineral concentrate but no comparative study janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Mineral concentrate janv-18 The Dutch position on developing criteria for safe use of any Y Y Y Y Position paper		janv-18	Dinuccio et al., 2012	N				Storage emissions	Exclude
Question 1-The Netherlands-NRR-products-SYSTEMIC- 16-07-2018 N N Database on composition of processed manure L janv-18 Schils_et_al-2015 N GHG L janv-18 de Vries et al.2012 N LCA on manure processing L janv-18 Velthof.2015 N Mineral concentrate but no comparative study L janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data L janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate L janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Mineral concentrate L janv-18 The Dutch position on developing criteria for safe use of N Y Y Y Position paper									Excluded
Janv-18 de Vries et al.2012 N LCA on manure processing L janv-18 Velthof.2015 N Mineral concentrate but no comparative study L janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data L janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate L janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Diguid concentrate L janv-18 The Dutch position on developing criteria for safe use of janv-18 N Position paper Position paper	L		Question 1-The Netherlands-NRR-products-SYSTEMIC-	Ν	N				Exclude
Janv-18 de Vries et al.2012 N LCA on manure processing L janv-18 Velthof.2015 N Mineral concentrate but no comparative study L janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data L janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate L janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Diguid concentrate L janv-18 The Dutch position on developing criteria for safe use of janv-18 N Position paper Position paper	L	janv-18			N			GHG	Exclude
Janv-18 Velthof.2015 N Mineral concentrate but no comparative study Janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data Janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate Janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Janv-18 The Dutch position on developing criteria for safe use of non developing criteria for safe u									Exclude
janv-18 Factsheet Systemic_Demo_Plant_Specifications N No CY, NU data janv-18 Klop_et_al-2012 Y Y Y Mineral concentrate janv-18 van Middelkoop and Holshof.2017 Y Y Y Y ianv-18 The Dutch position on developing criteria for safe use of name. N Position paper				Ν					Exclude
janv-18 Klop_et_al-2012 Y Y Y Y Mineral concentrate janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Liquid concentrate janv-18 The Dutch position on developing criteria for safe use of janv-18 N Y Y Y Position paper					N				Exclude
janv-18 van Middelkoop and Holshof.2017 Y Y Y Y Liquid concentrate The Dutch position on developing criteria for safe use of N				Υ		Y	Y	*	Included
The Dutch position on developing criteria for safe use of N Position paper				Y	Y	Y	Y		Included
			The Dutch position on developing criteria for safe use of	:					Exclude
L janv-18 Folder systemic N Project brochure	L	ianv-18	•	N				Project brochure	Exclude
YSTEMIC août-18 VCM Database N N N Database on composition of processed manure					Ν				Excluded

UK	janv-18	Digestates from Anaerobic Digestion A review of enhancement techniques and novel digestate products_0		Ν			No CY, NU data	Excluded
UK	janv-18	WRAP DC-Agri Summary					No raw data	Excluded
NEG	août-18	2008 - Co-Dig slurry - De Boer	Y	Υ	Υ	Y	Co-digestate	To be Included

RESEARCH ARTICLE

Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis

Dries Huygens¹ · Hans G. M. Saveyn¹

Accepted: 22 August 2018 © The Author(s) 2018

Abstract

Phosphorus (P) is a macronutrient essential for all living organisms. Food production has become highly dependent on mineral Pfertilisers derived from phosphate rock, a non-renewable and finite resource. Based on supply risk and economic importance for the European Union, phosphate rock and elemental P have been identified as critical raw materials. Moreover, P dissipation can lead to adverse impacts on the aquatic environment. The production and use of P-fertilisers derived from secondary raw materials could possibly contribute to a more sustainable agriculture in line with a circular economy. Biogenic and industrial resources and waste streams can be converted into value added materials, such as precipitated phosphate salts, thermal oxidation materials and derivates, and pyrolysis and gasification materials. A condition is, however, that the P must be recovered in a plant-available form and that the recovered P-fertiliser supports plant growth and nutrient uptake in European agroecosystems. Here, we review the agronomic efficiency of selected P-fertilisers derived from secondary raw materials by comparing plant responses relative to those after mined and synthetic P-fertiliser application in settings relevant for European agriculture, using meta-analyses. The major points are the following: (1) precipitated phosphate salts show similar agronomic efficiency to mined and synthetic Pfertilisers, with results that are consistent and generalisable across soil and crop types relevant for European agriculture; (2) thermal oxidation materials and derivates can deliver an effective alternative for mined and synthetic P-fertilisers, but the relative agronomic efficiency is dependent on the feedstock applied, possible post-combustion manufacturing processes, and the length of the plant growing season; (3) the agronomic efficiency of pyrolysis and gasification materials remains indeterminate due to a lack of available data for European settings. It is concluded that the agronomic efficiency of selected P-fertilisers derived from secondary raw materials supports their use in conventional and organic European agricultural sectors.

Keywords Phosphate fertiliser · Phosphate salts · Struvite · Biomass ashes · Biochar · Circular economy · Bioeconomy · Europe

1 Introduction

Present day phosphorus (P) nutrient use in the European agricultural sector can be characterised as predominantly linear, with significant P quantities accumulating in agricultural soils or being lost from the biogeochemical cycle and replenished

Dries Huygens Dries.HUYGENS@ec.europa.eu by mineral fertilisers (Schoumans et al. 2015; van Dijk et al. 2016). At the same time, important phosphorus-rich waste streams are being produced, originating from effluents of municipal and industrial wastewater treatment systems, slaughter refuse, or manure from livestock production (van Dijk et al. 2016). Whereas a share of this organic P is recycled directly on agricultural land, a number of concerns are associated to the landspreading of unprocessed biogenic materials. At first, specific organic wastes may contain a broad set of pollutants, which could be hazardous for the environment and may pose a risk to human health (Alvarenga et al. 2016; Charlton et al. 2016a; Charlton et al. 2016b; Harrison et al. 2006; Lowman et al. 2013; McBride 2003). This relates in particular to the presence of potentially toxic metals and metalloids or pathogens, as well as emerging concerns over a wide range of organic bioactive substances, such as antibiotics, organo-metalloids, and endocrine-disrupting substances. As a consequence,

Disclaimer: The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

¹ European Commission—Joint Research Centre, Directorate Growth and Innovation, Circular Economy and Industrial Leadership Unit, Calle Inca Garcilaso 3, 41092 Seville, Spain

these materials are increasingly being incinerated and the resulting ashes are transferred to landfills and construction materials (Buckwell and Nadeu 2016; Eurostat 2016), thus removing a significant P portion from the biogeochemical P cycle. Hence, valuable P in organic wastes and similar materials is currently being discarded for the sake of environmental and human health protection and improving public acceptance. Secondly, the unbalanced nutrient stoichiometry and spatial constraints linked to high transport costs of large volumes of material with low nutrient levels often hamper sustainable circular nutrient management and enhance P accumulation in soils (Buckwell and Nadeu 2016; Schoumans et al. 2010). A more efficient recycling of P may also contribute to providing alternative P sources for the European agricultural sector because phosphate rock, the primary material used for production of mineral P-fertilisers, is a finite resource and P demand may further increase over time (Cordell et al. 2009; MacDonald et al. 2011; Sattari et al. 2016). The concentration of P mines outside the continent makes the European Union highly vulnerable on imports, fluctuating prices of raw materials, as well as the political situation in supplying countries (George et al. 2016; Schröder et al. 2010). In any case, in order for recovered P-fertilisers to present a viable alternative to existing mineral P-fertilisers and to avoid long-term P accretion in soils, the P must be recovered in a plant-available form (Schröder et al. 2010). Hence, sustainable nutrient management in Europe will require to shift away from the current handling scenarios for biogenic P-rich materials and to promote efficient P-recycling within the agricultural sector.

The scope of the present study is on processed P-fertilisers derived from secondary raw materials that enable a decoupling of their nutrient value from the undesired properties, such as the low nutrient-to-volume ratio or the presence

Fig. 1 The agricultural valorisation of recovered P from secondary raw materials in high-quality fertilisers provides unique opportunities for nutrient recycling, and can possibly provide an alternative to mined and synthetic P-fertilisers in line with the circular economy framework (A farmer broadcasting fertilisers on arable land; ©oticki—stock.adobe.com)

D Springer

of specific contaminants (Fig. 1). Explicitly, this work focuses on three distinct P-recovery pathways for which the endmaterials could possibly provide an alternative to mined and synthetic P-fertilisers:

- Precipitated phosphate salts crystallised out of liquid and liquefied waste streams in the form of phosphate salts (e.g. struvite, MgNH₄PO₄.6H₂O). In practice, the recovered materials are not pure salts and, depending on the input material and recovery process applied, the co-precipitation of some organic matter, salts, and hydroxides of some metals present in the waste water end-products (Ca, K, Fe, etc.) typically occurs (Hao et al. 2013);
- P-rich ashes and slags obtained after thermal oxidation under non-oxygen limiting conditions. This material group includes raw incineration ashes (e.g. poultry litter ash) as well as derivates from the ashes formed through wet-chemical or thermal manufacturing processes aiming at the removal of contaminants and the increase in plant Pavailability (hereafter *thermal oxidation materials and derivates*);
- iii. P-rich pyrolysis and gasification materials obtained from production processes in a zero or low oxygen environment that form part of the pyrolysis spectrum techniques, including hydrothermal carbonisation, pyrolysis, and gasification (hereafter *pyrolysis and gasification materials*). This material group is often referred to as "biochar" and "gasification biochar" in scientific publications.

After setting minimum product quality requirements, these materials might show negligible risks for the environment and human health and can provide a cost- and carbon-efficient transport pathway for dissipated P from nutrient-excess to nutrient-poor regions in Europe (Buckwell and Nadeu 2016; Huygens et al. 2016; Schoumans et al. 2015). A comprehensive overview of the different production processes for the selected P-fertilisers derived from secondary raw materials, the characteristics of these end-materials, and possible quality requirements for their use as fertilisers are given in Huygens et al. (2016, 2017). It is noted that thermal oxidation materials and derivates and pyrolysis and gasification materials can serve other fertilising functions (e.g. soil improver, liming material, growing media, and plant biostimulant), but evaluating the potential of such fertilising applications falls beyond the scope of this study.

This study aims at assessing if the materials can fulfil the technical requirements for fertilising purposes. This is a relevant question because of the specific nature of such fertilisers; they typically have a reduced water-soluble fraction, but are highly soluble in acid media (Lehmann and Joseph 2015; Wilken et al. 2015). A quantitative review based on meta-

analysis techniques is undertaken that compares dry matter yields and P uptake efficiencies for plants grown with Pfertilisers derived from primary and secondary raw materials. Mathematically combining data from a series of wellconducted primary studies provides a more precise estimate that reduces the size of the confidence interval of the underlying "true effect" than any individual study (Garg et al. 2008; Pogue and Yusuf 1998). Meta-analysis techniques enable establishing whether the scientific findings are consistent and generalisable across European settings and facilitate understanding reasons why some studies differ in their results. For these reasons, a meta-analysis of similar, well-conducted, randomised, controlled trials has been considered one of the highest levels of evidence (Garg et al. 2008).

2 Materials and methods

2.1 Data sources

The literature search was initiated using the ISI Web of Science with the topic search terms "phosphorus AND plant AND fertili*er AND (recovery OR waste OR struvite OR calcium phosphate OR ash OR combustion OR biochar OR pyrochar OR hydrochar)." Searches were also undertaken with Google Scholar in order to pick up publications that were not indexed in the Web of Science. The inclusion of grey literature in meta-analysis studies is generally regarded as reducing publication bias and, therefore, preferable (McAuley et al. 2000). The cut-off date for data collection was 1 December 2016.

Studies that quantitatively reported dry matter yield and/ or plant P uptake after the application of recovered P and mineral P-fertiliser treatments during one plant growing season were selected. Only processed P-fertilisers with a minimum P2O5 content of 2% were selected. Studies with less than three experimental replicates were discarded. When studies did not report measures of variance, the corresponding author was contacted to provide the raw data for the calculation of the standard deviation. When measures of variance were not documented and could not be retrieved, uncertainty of these missing effect sizes was drawn from a multiple imputation algorithm based on the assumption of a common underlying variance, after which Rubin's rules were applied to get the point estimates and standard errors of the meta-analysis results (Schwarzer et al. 2015). Only assessments that there were performed on soils and plant species from boreal, temperate, and Mediterranean climate regions-within or outside Europe-were retained in order to provide an assessment that is relevant for the EU-27 (i.e. latitudes $> 35^{\circ}$ N/S). If not directly reported, P uptake was derived from the dry matter yield and plant P concentrations, and concomitant standard deviations were calculated assuming error propagation rules for normal distributions. When data were only provided in graphical format, the corresponding authors of the studies were contacted to obtain the raw numerical data. If not successful, relevant data points were extracted from the figures in the paper.

More studies were available for precipitated phosphate salts (26 for the relative agronomic efficiency for the response variable dry matter yield), and thermal oxidation materials and derivates (16 for the relative agronomic efficiency for the response variable dry matter yield), than for pyrolysis and gasification materials (eight for the relative agronomic efficiency for the response variable dry matter yield) (Table 1). Therefore, the results should be interpreted with the necessary caution and it should be clear that the conclusions with regard to agronomic efficiency differ in strength for each of the three fertiliser groups. Following studies were included in the assessment:

Precipitated phosphate salts: Achat et al. 2014b; Ackerman et al. 2013; Antonini et al. 2012; Bonvin et al. 2015; Cabeza et al. 2011; Cerrillo et al. 2015; Degryse et al. 2017; Gell et al. 2011; Gonzalez Ponce and Garcia Lopez De Sa 2007; Hammond and White 2005; Hilt et al. 2016; Johnston and Richards 2003; Katanda et al. 2016; Liu et al. 2016; Liu et al. 2011; Massey et al. 2009; Plaza et al. 2007; Ruiz Diaz et al. 2010; Sigurnjak et al. 2016; STOWA 2016; Talboys et al. 2016; Thompson 2013; Uysal et al. 2014; Vaneeckhaute et al. 2016; Vogel et al. 2015; Weinfurtner et al. 2009; Wilken et al. 2015.

Thermal oxidation materials and derivates: Brod et al. 2016; Cabeza et al. 2011; Codling et al. 2002; Delin 2016; Franz 2008; Komiyama et al. 2013; Kuligowski et al. 2010; Nanzer et al. 2014; Reiter and Middleton 2016; Rex et al. 2013; Schiemenz and Eichler-Löbermann 2010; Schiemenz et al. 2011; Severin et al. 2014; Vogel et al. 2015; Weigand et al. 2013; Wells 2013; Wilken et al. 2015.

Pyrolysis and gasification materials: Alotaibi et al. 2013; Codling et al. 2002; Collins et al. 2013; Kuligowski et al. 2010; Ma and Matsunaka 2013; Müller-Stöver et al. 2012; Reiter and Middleton 2016; Siebers et al. 2014.

2.2 Effect size

Plant dry matter yield and plant P use efficiency were used as the common statistical measures, or response variables, that are shared among studies. Plant P use efficiency was calculated as the difference in P uptake between fertilised (PU_F) and unfertilised plants (PU_C), expressed relative to the fertiliser P applied (P_{applied}, kg P ha⁻¹):

$$P \text{ use efficiency} = (PU_F - PU_C) / P_{applied}.$$
(1)

	Precipitated phosphate salts		Thermal oxidation	materials and derivates	Pyrolysis and ga	Pyrolysis and gasification materials	
	RAE _{DMY}	RAE _{PUE}	RAE _{DMY}	RAE _{PUE}	RAE _{DMY}	RAE _{PUE}	
Studies	26	19	16	14	8	6	
Cases	173	103	113	94	31	16	

 Table 1
 Number of studies and cases included in the meta-analyses on the agronomic efficiency of P-fertilisers derived from precipitated phosphate salts, thermal oxidation materials and derivates, and pyrolysis and gasification materials relative to P-fertilisers derived from
 primary raw materials (RAE_{DMY} and RAE_{PUE} indicate the relative agronomic efficiency for the response variables dry matter yield and phosphorus use efficiency, respectively)

Standardisation of the literature results was undertaken through calculation of the effect size. This allows quantitative statistical information to be pooled from and robust statistical comparisons to be made between effects from a range of studies that reported results based on different experimental variables. The effect size was calculated as the natural logarithm of the response ratio R by using the following equation (Borenstein et al. 2009):

$\ln R = \ln \left(\bar{X}_{P-\text{fertilisers derived from secondary raw materials} / \bar{X}_{mined and synthetic P-\text{fertilisers}} \right).$	
---	--

where $\overline{X}_{P-\text{fertilisers derived from secondary raw materials}}$: mean dry matter yield or mean P use efficiency after the application of P-fertilisers derived from secondary raw materials, and $\overline{X}_{\text{mined and synthetic P-fertilisers}}$: mean dry matter yield or mean P use efficiency after the application of mined and synthetic P-fertilisers.

The response ratio was then calculated for a number of pairwise comparisons or "cases" where all grouping variables are identical for both fertiliser treatments. These variables include soil and crop used, crop harvest time, P application rate, etc. (see Sect. 2.3). We used the log response ratio and its variance in the analysis to yield summary effects and confidence limits in log units during the different meta-analysis steps. Each of these values was then converted back to response ratios to report the final results (Borenstein et al. 2009) (see Sect. 2.4.).

When P uptake is lower for fertilised than for the control unfertilised treatments, a negative P use efficiency value is produced that limits further calculations. Therefore, only cases were retained when the P uptake after the application of mined and synthetic P-fertilisers (PU_{Fprim}) is significantly different from the unfertilised treatment (PU_C) at the 95% level, corresponding to the cases when the application of mined and synthetic P-fertilisers effectively increased plant P uptake. The selective removal of all such cases, however, penalised treatments assessing the plant P uptake responses to P-fertilisers derived from secondary raw materials (PU_{Fsec}) as it also removed some cases for which exclusively those treatment resulted in a significantly greater plant P uptake relative to the unfertilised treatment. Therefore, the number of cases when $PU_{Fsec} > PU_{C}$ and $PU_{Fprim} = PU_{C}$ was calculated and an equal number of cases for which $PU_{Fsec} = PU_{C}$ and $F_{prim} > PU_{C}$ were removed from the analyses. This was done by cumulatively removing the F_{sec} treatments that were least different from PU_C

D Springer

as indicated by the *P* value of a *t* test between PU_{Fsec} and PU_{C} . Ultimately, this procedure generated a dataset in which only positive P use efficiency values were retained.

(2)

P-fertilisers derived from secondary raw materials are fertilisers resulting from of a nutrient recovery operation of secondary raw materials through crystallisation processes (e.g. struvite and calcium phosphates; precipitated phosphate salts) or thermo-chemical processes (i.e. ashes, ash-derivates, slags, and chars as obtained by thermal oxidation and gasification/pyrolysis; thermal oxidation materials and derivates and pyrolysis and gasification materials, respectively). Mined and synthetic P-fertiliser treatments included different P fertilising substances, such as triple superphosphate, monoammonium phosphate, diammonium phosphate, calcium super phosphate, single superphosphate, and potassium phosphate. Dry matter yield and plant P uptake were mostly measured for aboveground plant biomass yield, but some studies assessed whole plant biomass or specific plant organs. The control was defined as being identical to the experimental treatment with regard to all variables apart from the type of fertiliser applied.

2.3 Grouping variables

For all selected studies, quantitative information on following grouping variables was recorded: application rate, application form, harvest time after fertiliser application, soil pH, soil texture, soil P fertility, sowed plant species, experiment type, and geographic latitude of the collected experimental soils. When specific parameters were not documented in the publication, the corresponding author was requested to provide the information. In case the data was not available, the respective cases were not included in the statistical assessment for the grouping variable.

Data were grouped prior to meta-analysis to enable a broad ranging assessment of fertilising effectiveness of P-fertilisers derived from secondary raw materials as a function of soil type, plant group, and management option. Soil pH was classified as acidic for soils with a pH value less or equal than 6.0 and as neutral/basic for soils of pH greater than 6.0. Soil texture was classified as coarse (sand, loamy sand, and sandy loam), medium (loam, silt loam, and silt), or fine (sandy clay, sandy clay loam, clay loam, silty sandy clay loam, silty clay, and clay). Feedstock indicated the input materials from which the P-fertiliser was derived (e.g. sewage sludge, manure). For thermal oxidation materials and derivates, post-processing refers to the production of ash-derivates through wet-chemical or thermal manufacturing steps applied. Plant groups involved grasses (both annual and perennial species), oilseeds, cereals, legumes, and others (e.g. leaf vegetable, cormous flowering plants, fruit vegetable). Application form distinguished fertilisers that were applied as a powder or as granules. Assessment time was categorised as either short or long for studies that harvested plants within and posterior to a period of 65 days of fertiliser application, respectively. In case of assessments on grasses, only the cumulative biomass and P uptake at the end of the experiment was considered. Soil P status was categorised as P-poor and P-rich, with a cutoff value of extractable Olsen-P content of 12.4 mg P kg⁻¹. The cutoff value was based on the average limit value for the "very low" P fertility category for a single soil within a number of European countries (Jordan-Meille et al. 2012). When other extractable P methods were applied, transfer functions and comparative relationships as given in Jordan-Meille et al. (2012), Neyroud and Lischer (2003) McLaughlin (2002), and Prasad et al. (1988) were applied. A P-poor status was assumed for studies that used Rhine sand as potting medium. The approach applied based on a single cutoff value and transfer functions to discern soil P fertility for all soil-plant combinations is a simplification of a complex scientific matter (Jordan-Meille et al. 2012), but we are confident that it meets the objective of generally discerning soil P status in this metaanalysis study. Experimental setting separated pot from field studies. Experimental design assessed if the experimental study design involved the addition of plant nutrients, other than P, present in P-fertilisers derived from secondary raw materials were also added in the treatment that applied mined and synthetic P-fertilisers; "Fully balanced" corresponds to cases where all micro- and macronutrients were balanced between treatments. "Deficient" refers to designs where primary and secondary macronutrients present in P-fertilisers derived from secondary raw materials were not added in the treatment that applied mined and synthetic P-fertilisers (e.g. struvite as P-fertiliser derived from secondary raw materials, but no addition of Mg in the mined and synthetic P-fertiliser treatment).

The effect of the different groups was assessed in the metaanalysis. The geographic latitudes of the collected soils were plotted against the relative agronomic efficiency for the response variable P use efficiency, and the significance of the regression slope was assessed.

2.4 Presentation of meta-analysis results

The response ratio can be interpreted as the agronomic efficiency of P-fertilisers derived from secondary P sources relative to mined and synthetic P-fertilisers. Response ratios were plotted for the different grouping variables with squares indicating the weighted mean of the effect and error bars showing 95% confidence intervals. A relative agronomic efficiency value below 1 indicates that that the P-fertiliser derived from secondary P sources is a less effective plant P-source than a synthetic P-fertiliser derived from mined phosphate rock; a value above 1 indicates the opposite. The error bars that cross the vertical 1 line indicate that the agronomic efficiency of F_{sec} is not significantly different from F_{prim} . Meta-analyses were performed using the "meta" package (Schwarzer 2007) in R version 3.3.0 (R Development Core Team 2008).

Data availability statement The datasets analysed during the current study are not publicly available because the authors obtained some primary data from original works based on an agreement that the data would be presented as "aggregated results of the full database as a mean value plus a standard deviation." Data are available from the corresponding author on reasonable request, and on condition that the author of the primary data approves the request.

3 Results and discussion

3.1 Precipitated phosphate salts

The overall results indicated a similar agronomic efficiency for precipitated phosphate salts compared to mined and synthetic P-fertilisers. The mean relative agronomic efficiency values equal 0.99 and 1.05 for dry matter yield and P use efficiency, respectively (Fig. 2), with the corresponding 95% confidence intervals overlapping the 1 value for both parameters. These observations hold true for groups varying in soil pH, soil texture, feedstock, application form, plant type, soil P status, assessment time, and experimental design and setting. The agronomic efficiency of precipitated phosphate salts is thus consistent and generalisable across different settings, including soil and crop types, relevant for the European agricultural sector. Although multi-year assessments fall beyond the scope of this meta-analysis, the results of Thompson (2013) and Wilken et al. (2015) confirm the sustained long-term efficiency of precipitated phosphate salts as a P-fertiliser.

Fig. 2 The agronomic efficiency of precipitated phosphate salts relative to mined and synthetic P-fertilisers for the response variables dry matter yield and phosphorus use efficiency as a function of grouping variables. Results are presented as weighted mean (square) and 95% confidence intervals (error bars)

	<u>dry m</u>	atter yield	phosphoru	s use efficiency
Subgroup	No. of cases (%)		No. of cases (%)	
Overall	173 (100)		103 (100)	
pH acidic neutral or basic	58 (34) 115 (66)		40 (39) 63 (61)	
Texture coarse medium fine	71 (41) 70 (40) 26 (15)	B	48 (47) 47 (46) 8 (8)	B
Feedstock sewage manure industrial wastewater urine co-digestate	54 (31) 61 (35) 7 (4) 15 (9) 36 (21)	 	41 (40) 29 (28) 5 (5) 	
Application form powder granules	104 (60) 63 (36)		76 (74) 24 (23)	
Plant type cereal grass oilseed other	108 (62) 29 (17) 15 (9) 21 (12)		59 (57) - 27 (26) 8 (8) 9 (9)	
Soil P status P-poor P-rich	123 (71) 45 (26)	-	66 (65) 33 (32)	
Assessment time short long	77 (45) 92 (53)		40 (39) 60 (58)	
Fertiliser struvite calcium phosphate dittmarite	155 (90) 14 (8) — 4 (2)	-B	90 (87) 10 (10) 3 (3)	
Experimental design fully balanced Mg- and/or N deficient	80 (46) 93 (54)		61 (59) 42 (41)	
Experimental setting field trial pot trial	59 (34) 114 (66)		23 (22) 80 (78)	
	0.8	0.9 1.0 1.	1 1.2 0.6	0.8 1.0 1.2 1.4

relative agronomic efficiency

Unlike most mined and synthetic P-fertilisers, precipitated phosphate salts are water insoluble, but their solubility is increased in acid solutions (Wilken et al. 2015). Nonetheless, our results indicated that soil pH had no significant effect on the relative agronomic efficiency. Achat et al. (2014a) indicated that isotopically exchangeable P was similar for finely ground struvite as for triple superphosphate, irrespective of pH in the range 5.2–8.1. Talboys et al. (2016) indicated that the short term (<42 days) dissolution of granulated struvite, the most common precipitated phosphate salt, shows similar dynamics across a wider soil pH range of 5.0–8.0. Degryse et al. (2017) indicated a 60-day granulated struvite dissolution

Deringer

rate of > 80% in an acid soil (pH 5.9), but < 10% dissolution in a basic soil (pH 8.5). Hence, as most European soils have a pH between 5 and 8 (Reuter et al. 2008), soil pH is not expected to exert a major influence over the dissolution patterns of precipitated phosphate salts and the relative agronomic efficiency. Plants also modify the rhizosphere pH as they exudate organic acids from their root biomass in significant quantities that can drastically lower pH in the plant root microenvironment. Talboys et al. (2016) indicated that organic acids have a major impact on the rate of dissolution of P from struvite and that plants with root systems that exude large quantities of organic acids are more effective at taking up P from struvite granules. The exudates cause the dissolution of the precipitated phosphate salts in the vicinity of the plant root. Grasses exudate significantly more organic acids than common crops; estimates for the total allocation of photosynthates—a proxy for rhizodeposition—to roots are 50–70% higher for grasses than for cereals, such as wheat and barley (Kuzyakov and Domanski 2000). Hence, species-specific patterns of root exudation may explain the variations in relative agronomic efficiencies observed, but the effect of plant type is overall not significant (Fig. 2).

No significant effect of assessment time and application form on the relative agronomic efficiency along a single plant growing season was observed for precipitated phosphate salts (Fig. 2). Although the slower initial P release rate from the granulated fertiliser could possibly reduce plant uptake of P during the very initial plant growth stages (<36 days; Degryse et al. 2017; Talboys et al. 2016), studies that applied an assessment time between 36 and 65 days showed good performance when precipitated phosphate salts were applied. For crops subject to struvite fertilisation, it is has been suggested that a reduction in number of grain heads due to shortterm P deficiency is counterbalanced by the crop root system's capacity to take up P in the later plant growth stages (Talboys et al. 2016). Hence, even for studies with an assessment time < 65 days, the sustained P release from precipitated phosphate salts could possibly compensate their lower initial P-availability and their lower P-dissolution rate relative to water-soluble P-fertilisers (Degryse et al. 2017; Talboys et al. 2016). The relative agronomic efficiencies for dry matter yield and P use efficiency were not significantly different from 1 for struvite and dittmarite, but the 95% confidence interval for calcium phosphates (grouping variable fertiliser) extended to a value marginally below 1 for dry matter yield (0.995; Fig. 2). Struvite is the most common precipitated phosphate salt, but some P-recovery processes target a different end-material such as dittmarite or dicalcium phosphates. The crystallisation of calcium phosphates may involve the formation of metastable precursor phases, such as octocalcium phosphate and hydroxyapatite, which are less available to plants, especially at alkaline pH (Wang and Nancollas 2008). Hence, the relative agronomic efficiency of calcium phosphates can vary depending on the exact composition of the calcium phosphate phases included in the end-material. After application to the soil, calcium phosphates can also transform into more stable forms (Arai and Sparks 2007), potentially further contributing to the wider relative agronomic efficiency ranges observed for calcium phosphates than for struvite and dittmarite.

3.2 Thermal oxidation materials and derivates

The mean relative agronomic efficiency values for thermal oxidation materials and derivates equal 0.92 and 0.81 for dry matter yield and P use efficiency, respectively (Fig. 3).

Significant differences in the relative agronomic efficiency of thermal oxidation materials and derivates were observed dependent on the feedstock applied and the possible post-processing steps that were performed (Fig. 3). The agronomic efficiency of thermal oxidation materials and derivates derived from crop residues, poultry litter, and pig manure did not differ from mined and synthetic fertilisers (Fig. 3). Thermal oxidation materials and derivates derived from wood showed a low relative agronomic efficiency, but the results should be interpreted with precaution because of the low number of cases (Fig. 3). Thermal oxidation materials and derivates derived from sewage sludge showed a significantly lower relative agronomic efficiency than for thermal oxidation materials and derivates derived from crop residues and poultry litter (Fig. 3). Nonetheless, it should be considered that thermal oxidation materials and derivates derived from sewage sludge include both raw ashes and ashes that have been further processed after incineration, and that results for crop residues were derived from only three studies that used a similar soil type (Delin 2016; Schiemenz and Eichler-Löbermann 2010; Schiemenz et al. 2011). For sewage sludge ashes, a post-incineration manufacturing step is often applied to increase P-availability and to comply with legislative limit values for metals and metalloids. This analysis confirms that such manufacturing processes starting from sewage sludge mono-incineration ashes clearly improve the plant availability relative to unprocessed sewage sludge ashes and enable the transformation of sewage sludge ashes into efficient P-fertilisers. The relative agronomic efficiency values for dry matter yield were 1.03 and 0.93 for materials subjected to wet-digestion and thermal post-processing steps, respectively (Fig. 3). Relative agronomic efficiencies close to 1 can reasonably be expected for materials resulting from wet-digestion post-processing, especially for these that have an equal chemical composition to that of mined rock phosphate and processed Pfertilisers (e.g. Ecophos® process, ICL RecoPhos® process, acidulation process; see Huygens et al. (2016) and Egle et al. (2016)). Thermal post-processing steps on sewage sludge incineration ashes aim at separating P from other elements and to influence the crystal structure of the materials by isomorphic substitution of the PO_4^{3-} ionic group (by for example SiO_4^{2-} or CO_3^{2-}) and thus affect the reactivity of the final product and therefore plant P availability. The final products show similar characteristics as Thomasphosphate and Rhenaniaphosphate (Huygens et al. 2016) and show overall good fertiliser efficiency.

The observed relative agronomic efficiencies were not affected by soil pH, soil texture, application form, or soil P status (Fig. 3). The impact of pH on the P-dissolution depends on the elemental composition of the P-fertiliser because P is strongly bond to Ca at high pH and to Fe and Al

Fig. 3 The agronomic efficiency of thermal oxidation materials and derivates relative to mined and synthetic P-fertilisers for the response variables dry matter yield and phosphorus use efficiency as a function of grouping variables. Results are presented as weighted mean (square) and 95% confidence intervals (error bars)

	<u>dry</u>	matter yield	phosphor	<u>us use efficiency</u>
Subgroup	No. of cases (%)		No. of cases (%)	
Overall	113 (100)	•	94 (100)	
pH acidic neutral or basic	67 (59) 46 (41)	B - B	51 (54) 43 (46)	
Texture coarse medium fine	95 (84) 13 (12) 2 (2)		72 (77) 22 (23) 0 (0)	
Feedstock sewage sludge crop residue poultry litter pig manure slaughter by-products wood mix	65 (58) 20 (18) 14 (12) 3 (3) 4 (4) 2 (2) 5 (4)		54 (57) 25 (27) 4 (4) 1 (1) 4 (4) 2 (2) 4 (4)	
Post-processing wet-digestion thermal none (sewage sludge) none (other)	8 (7) 51 (45) 13 (12) 41 (36)	- - -	2 (2) 48 (51) 10 (11) −■ 34 (36)	
Application form powder granules	82 (73) 29 (26)	-	59 (63) 34 (36)	
Plant type cereal grass oilseed legume other	69 (61) 17 (15) 8 (7) 2 (2) 17 (15)	* - -	61 (65) 14 (15) 9 (10) 1 (1) 9 (10)	-=- -=- -=- -=-
Soil P status P-poor P-rich	26 (23) 74 (65)		18 (19) 75 (80)	
Assessment time short long	73 (65) 40 (35)		68 (72) 26 (28)	
Experimental design fully balanced deficient	75 (66) 38 (34)	-=-	59 (63) 35 (37)	-=-
Experimental setting field trial pot trial	17 (15) 96 (85) 		12 (13) 82 (87)	-8-
		0.75 1.0	1.25 0.25	0.5 0.75 1.0 1.25
		relativ	e agronomic efficie	ency

at low pH (Hinsinger 2001; Tóth et al. 2014). Nonetheless, the high basic cation contents of some thermal oxidation materials might buffer the acidity effect of the soil microenvironment, thus obscuring the effect of the soil pH. Also, no consistent differences were observed in relative agronomic efficiency across plant types for the response variables, indicating that possible differences in root exudation patterns of organic acids are not meaningfully impacting the P-release patterns from thermal oxidation materials and derivates. A significant effect of assessment time on relative agronomic efficiency for dry matter yield and P use efficiency was observed (P < 0.001; Fig. 3), with values that are 20– 40% lower in the long-term (>65 days) than in the shortterm (<65 days). The plant-availability of the P in thermal oxidation materials and derivates is likely controlled by the coordinated cations of Ca, Mg Al, and Fe to which PO₄³⁻ is bound. All these different ions are abundantly present in thermal oxidation materials, although their relative abundance varies across end-materials. Complexes between phosphate

and K. Ca. Mg. and S ions are relatively easily decomposed (Hinsinger 2001; Tóth et al. 2014), and this more labile Pfraction is therefore likely to be released in the short-term. Phosphate may, however, be unavailable to plants when strongly bound to particular trivalent cations in a stable matrix (Barrow 1984; Hinsinger 2001). The release of P from this more stable fraction could be limited, effectively decreasing the long-term P supply from thermal oxidation materials and derivates. This contrasts with mined and synthetic fertilisers that are of a uniform chemical composition; such fertilisers can be expected to release P readily upon physical disintegration. The released P that is not readily taken up by plants can be adsorbed to soil minerals, with the nature of such reactions dependent on the pH and on the concentration of metal cations, such as Ca, Fe, and Al as well as organic and inorganic ligands (Hinsinger 2001; Tóth et al. 2014). At a later time in the plant growing season, desorption of sorbed P can occur via ligand exchange reactions, especially if the P was bound in more labile soil P-complexes (Hinsinger 2001). Possibly, such desorption processes could effectively contribute to a better long-term effect of mined and synthetic P-fertilisers compared to thermal oxidation materials and derivates rich in trivalent cations.

A significant effect of experimental design (P: 0.04) and experimental setting (P: 0.003) was observed for the relative agronomic efficiency for the response parameter P use efficiency (Fig. 3). Studies that supply primary and secondary macronutrients together with mined and synthetic P-fertilisers to ensure the equal supply of all different plant nutrients present in the thermal oxidation materials and derivates show somewhat reduced relative agronomic efficiency values, especially for the response variable P use efficiency. On the other hand, results for the field studies performed in more realistic settings than those of pot experiments show better results, although this effect was only observed for the response variable P use efficiency. Both effects are potentially related, as field studies often apply a deficient experimental design where the broad range of secondary macronutrients and micronutrients present in thermal oxidation materials and derivates are not added in the mined and synthetic Pfertiliser treatment. Hence, these results indicate the importance of secondary macronutrients and micronutrients in achieving optimal agricultural yields. It is often challenging to evaluate the supplementary fertiliser need for particular plant-limiting elements within the broad spectrum of secondary macronutrients and micronutrients. On condition that the excess application of micronutrients is avoided, the application of thermal oxidation materials and derivates as P-fertilisers could provide the complementary benefit of supplying secondary macronutrients and micronutrients to enhance agronomic yields.

Altogether, these observations validate that thermal oxidation materials and derivates can deliver an effective alternative for mined and synthetic P-fertilisers in the European agriculture, but that the relative agronomic efficiency is dependent on the properties of the produced material.

3.3 Pyrolysis and gasification materials

The mean relative agronomic efficiency values for pyrolysis and gasification materials equal 0.87 and 0.46 for dry matter yield and P use efficiency, respectively (Fig. 4). Due to the low sample size, only a marginal reduction of the size of the confidence interval of the underlying true effect across groups could be achieved, compared to the results from individual studies by applying the meta-analysis techniques. Hence, no general conclusions can be drawn on relative agronomic efficiency across pyrolysis and gasification materials applied to different soil types, feedstocks, application form, and plant types. Figure 4 enables, nevertheless, a standardised visual assessment of the ranges observed for relative agronomic efficiency across selected studies.

The properties of pyrolysis and gasification materials can vary widely, depending on the interactive effects between production process conditions and feedstock applied. Many groups, including pyrolysis and gasification materials derived from slaughter by-products, poultry litter, crop residues, and pig manure, display an agronomic efficiency that is not significantly different from mined and synthetic P-fertilisers (Fig. 4). The significant differences in relative agronomic efficiency between specific groups varying in soil texture (for dry matter yield), feedstock (for P use efficiency), application form (for P use efficiency), plant type (for dry matter yield and P use efficiency), experimental design, and setting (for P use efficiency) should be interpreted with caution because some of the contrasting groups have a low number of cases, often originating from a few studies.

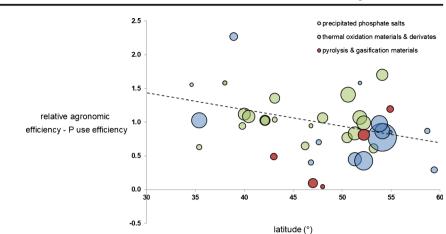
Only the relative agronomic efficiency values for neutral and basic soils and for pyrolysis and gasification materials that were applied in granulated form were derived from a minimum of four different studies and a number of cases greater than 10 for both response variables (Fig. 4). For these groups, the relative agronomic efficiency values pointed towards a significantly lower effectiveness than for mined and synthetic P-fertilisers. Potentially, some of the documented high agronomic efficiencies after the addition of pyrolysis and gasification materials could be the result of a liming effect that increases soil P availability (Hass et al. 2012), or the result of the milling of the pyrolysis and gasification material that increases the P solubility in the otherwise stable pyrolysis matrix (Ma and Matsunaka 2013). Therefore, future studies should focus on assessing the mechanisms that underlie documented potential positive plant responses and evaluate the agronomic efficiency of pyrolysis and gasification materials in the same physical form as it will be applied under actual settings in agriculture.

It is concluded that the current available dataset does not enable a comprehensive assessment of the agricultural efficiency of P-rich pyrolysis and gasification materials in

Fig. 4 The agronomic efficiency of pyrolysis and gasification materials relative to mined and synthetic P-fertilisers for the response variables dry matter yield and phosphorus use efficiency as a function of grouping variables. Results are presented as weighted mean (square) and 95% confidence intervals (error bars)

	<u>dry r</u>	natter yield	phospł	norus use efficiency
Subgroup	No. of cases (%)		No. of cases (%)	
Overall	31 (100)	_	16 (100)	e
рН				
acidic neutral or basic	9 (29) 22 (71)	B	3 (19) 13 (81)	
Texture				
coarse	16 (52) -		6 (38)	_
medium	9 (29)		4 (25)	>
fine	0 (0)		0 (0)	
Feedstock	40 (20)	_	7 (11)	_
slaughter by-products poultry litter	12 (39) 8 (26)		7 (44)	
crop residue	5 (16)		1 (6) 4 (25)	
pig manure	4 (13)		2 (13)	-
cattle manure	2 (6)	_	2 (13)	■ -
Application form				
powder	11 (35)		5 (11)	
granules	20 (65)		11 (26)	
Plant type				
cereal	16 (52)		7 (44)	_
oilseed	6 (19)		6 (38)	
legume	3 (10)	_	− ■ 0 (0)	_
other	6 (19)		3 (19)	-
Soil P status				
P-poor	14 (45)		7 (44)	B
P-rich	13 (42)		9 (56)	
Assessment time				
short	19 (61)		10 (63)	
long	12 (39)		6 (38)	
Experimental design				
fully balanced	7 (23)		4 (25)	
deficient	24 (77)		12 (75)	_
Experimental setting				
field trial	5 (16)		3 (19)	→
pot trial	26 (84)		13 (81)	
		0.75 1.0	1.25 0	0.25 0.5 0.75 1.0 1.25
		relative	e agronomic effici	ency

relevant European agricultural settings and that plant responses for P-rich pyrolysis and gasification materials can vary widely depending on the feedstock and production conditions of the pyrolysis and gasification materials, as well as on the soil and plant type under fertilisation.


3.4 Effect of geographic latitude

Sections 3.1–3.3 provide an overview of the relative agronomic efficiency as a function of soil and plant type, but fail to take into consideration the interactions and combinations of those variables that occur in different geographic regions in Europe. Especially the effect of the north–south position (i.e. latitude of the geographic coordinates) is relevant to consider, given that climate conditions (colder and drier soils at higher latitudes), soil

Deringer

texture (sandier at higher latitudes), and soil pH (more basic at lower latitudes) vary significantly across this gradient (Ballabio et al. 2016; Panagos et al. 2012). Concerns related to the effectiveness of water insoluble P-fertilisers in semi-arid and Mediterranean regions may exist because some slow release Pfertilisers, such as phosphate rock and meat and bone meal, do not dissolve readily in such soils (Bolland and Gilkes 1990; Elliott et al. 2007). The results of our work, however, reject such expectations for European settings as the relative agronomic efficiency for the response variable P use efficiency correlated negatively to latitude (Fig. 5). A significant negative correlation between geographic latitude and the relative agronomic efficiency was indicated (*P*: 0.02), with greater values observed in sites of lower latitudes than in higher latitudes (Fig. 5). Latitude explained, however, only a minor share of the total variance **Fig. 5** Bubble plot indicating the relationship between the relative agronomic efficiency for the response variable phosphorus use efficiency and geographic latitude. The size of the bubbles represents the number of cases and relative weight for each data pair. The regression line across all data points was significant (P 0.02; R^2_{adi} 0.14)

observed (R^2_{adj} : 0.14) (Fig. 5). It should, however, be noted that the assessment includes both pot and field studies, and that some variables, especially climate conditions, may not be accurately represented in pot experiments. Therefore, the results should be interpreted with the necessary precaution. Nonetheless, our preliminary results suggest effectiveness of P-fertilisers derived from secondary raw materials in semi-arid and Mediterranean European regions. Given their low water-soluble P fraction, the soil moisture patterns probably have a negligible impact on the solubility of P-fertilisers derived from secondary raw materials. The solubility of those fertilisers is mainly determined by the extent of root exudation of the plants grown on the agricultural field. It can, however, be expected that the solubility of mined and synthetic P-fertilisers is increased in the more northern latitudes characterised by more moist soils due to the increased precipitation. Therefore, the agronomic efficiency of mined and synthetic P-fertilisers could be higher for the higher latitudes, resulting in decreased relative agronomic efficiency values in the more northern regions. Other soil properties that vary across latitude, such as soil texture and soil pH, did not have a significant effect on the relative agronomic efficiency for the Pfertilisers under study.

4 Conclusion

This work is important as it reviews for the first time the agricultural efficiency of different P-fertilisers derived from secondary raw materials that show a significant potential to substitute mined rock phosphate and processed P-fertilisers in Europe (Huygens and Saveyn 2017). The meta-analysis estimates suggest that selected P-fertilisers derived from secondary raw materials may compare in agronomic efficiency with mined and synthetic P-fertilisers. Specifically, our results demonstrate that the agronomic efficacy of precipitated

phosphate salts and specific thermal oxidation materials and derivates is consistent for different soil and plant types and is thus not restricted to specific agricultural settings within a European context. In spite of their low water solubility, specific P-fertilisers derived from secondary raw materials could be a valuable alternative for mined rock phosphate and processed P-fertilisers in the conventional European agriculture. Applications for all studied P-fertilisers derived from secondary raw materials are also apparent for the expanding organic farming sector in Europe; at present, meat and bone meal and their ashes and low concentrated P-fertilising products, such as manure and compost, are the sole P-rich fertilising materials used in organic farming (Nelson and Janke 2007). Phosphorus-recycling from vastly dissipated P-sources, such as municipal and industrial wastewaters and manure in the form of P-fertilisers, is an apt manner to transport P in a concentrated form over long distances (e.g. from livestock and demographically dense regions in north-west Europe to more southern European regions with increased P-fertiliser needs; Tóth et al. 2014). Based on the assessment of agronomic efficiency, it is concluded that an increased use of selected Pfertilisers derived from secondary raw materials in European agriculture could contribute to decreased P dissipation and more circular nutrient cycles.

Acknowledgements We are grateful to the many experts and scientists that have provided raw data and background information that enabled the present analysis, with a special thanks to those that responded to requests for data included in this study: J. Ackerman, R. Cabeza, B. Eichler-Löbermann, F. Degryse, K. Gell, J. Hammond, T. Komiyama, X. Liu, M. Massey, S. Nanzer, A. Oberson, C. Plaza, F. De Ruijter, J.H. Harrison, I.R. Richards, V. Wilken, F. Zvomuya, and their co-authors.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Achat DL, Daumer M-L, Sperandio M, Santellani A-C, Morel C (2014a) Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics. Nutr Cycl Agroecosyst 99:1–15. https://doi.org/10.1007/s10705-014-9614-0
- Achat DL, Sperandio M, Daumer M-L, Santellani A-C, Prud'Homme L, Akhtar M, Morel C (2014b) Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques. Geoderma 232:24–33. https://doi.org/10. 1016/j.geoderma.2014.04.028
- Ackerman JN, Zvomuya F, Cicek N, Flaten D (2013) Evaluation of manure-derived struvite as a phosphorus source for canola. Can J Plant Sci 93:419–424. https://doi.org/10.4141/cjps2012-207
- Alotaibi KD, Schoenau JJ, Fonstad T (2013) Possible utilization of ash from meat and bone meal and dried distillers grains gasification as a phosphorus fertilizer: crop growth response and changes in soil chemical properties. J Soils Sediments 13:1024–1031. https://doi. org/10.1007/s11368-013-0678-2
- Alvarenga P, Mourinha C, Farto M, Palma P, Sengo J, Morais MC, Cunha-Queda C (2016) Ecotoxicological assessment of the potential impact on soil porewater, surface and groundwater from the use of organic wastes as soil amendments. Ecotoxicol Environ Saf 126: 102–110. https://doi.org/10.1016/j.ecoenv.2015.12.019
- Antonini S, Arias MA, Eichert T, Clemens J (2012) Greenhouse evaluation and environmental impact assessment of different urine-derived struvite fertilizers as phosphorus sources for plants. Chemosphere 89:1202–1210. https://doi.org/10.1016/j.chemosphere.2012.07.026
- Arai Y, Sparks DL (2007) Phosphate reaction dynamics in soils and soil components: a multiscale approach. Adv Agron 94:135–179. https://doi.org/10.1016/S0065-2113(06)94003-6
- Ballabio C, Panagos P, Monatanarella L (2016) Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 261:110–123. https://doi.org/10.1016/j.geoderma.2015.07.006
- Barrow NJ (1984) Modelling the effects of pH on phosphate sorption by soils. J Soil Sci 35:283–297. https://doi.org/10.1111/j.1365-2389. 1984.tb00283.x
- Bolland MDA, Gilkes RJ (1990) Rock phosphates are not effective fertilizers in Western Australian soils: a review of one hundred years of research. Fertil Res 22:79–95. https://doi.org/10.1007/bf01116182
- Bonvin C, Etter B, Udert KM, Frossard E, Nanzer S, Tamburini F, Oberson A (2015) Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio 44:S217–S227. https://doi.org/10.1007/s13280-014-0616-6
- Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. John Wiley & Sons, Ltd, Chichester, UK
- Brod E, Øgaard AF, Krogstad T, Haraldsen TK, Frossard E, Oberson A (2016) Drivers of phosphorus uptake by barley following secondary resource application. Front Nutr 3. https://doi.org/10.3389/fnut. 2016.00012
- Buckwell A, Nadeu E (2016) Nutrient recovery and reuse (NRR) in European agriculture. A review of the issues, opportunities, and actions. RISE Foundation, Brussels

- Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr Cycl Agroecosyst 91:173–184. https://doi.org/10.1007/ s10705-011-9454-0
- Cerrillo M, Palatsi J, Comas J, Vicens J, Bonmati A (2015) Struvite precipitation as a technology to be integrated in a manure anaerobic digestion treatment plant—removal efficiency, crystal characterization and agricultural assessment. J Chem Technol Biotechnol 90: 1135–1143. https://doi.org/10.1002/jctb.4459
- Charlton A, Sakrabani R, McGrath SP, Campbell CD (2016a) Long-term impact of sewage sludge application on rhizobium leguminosarum biovar trifolii: an evaluation using meta-analysis. J Environ Qual 45: 1572–1587. https://doi.org/10.2134/jeq2015.12.0590
- Charlton A, Sakrabani R, Tyrrel S, Rivas Casado M, McGrath SP, Crooks B, Cooper P, Campbell CD (2016b) Long-term impact of sewage sludge application on soil microbial biomass: an evaluation using meta-analysis. Environ Pollut 219:1021–1035. https://doi.org/10. 1016/j.envpol.2016.07.050
- Codling EE, Chaney RL, Sherwell J (2002) Poultry litter ash as a potential phosphorus source for agricultural crops. J Environ Qual 31: 954–961
- Collins HP, Streubel J, Alva A, Porter L, Chaves B (2013) Phosphorus uptake by potato from biochar amended with anaerobic digested dairy manure effluent. Agron J 105:989–998. https://doi.org/10. 2134/agronj2012.0363
- Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292– 305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
- Degryse F, Baird R, da Silva RC, McLaughlin MJ (2017) Dissolution rate and agronomic effectiveness of struvite fertilizers—effect of soil pH, granulation and base excess. Plant Soil 410:139–152. https://doi. org/10.1007/s11104-016-2990-2
- Delin S (2016) Fertilizer value of phosphorus in different residues. Soil Use Manag 32:17–26. https://doi.org/10.1111/sum.12227
- Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542. https://doi.org/10.1016/j. scitotenv.2016.07.019
- Elliott AL, Davis JG, Waskom RM, Self JR, Christensen DK (2007) Phosphorus fertilizers for organic farming systems. Publ. No. 0.569. Colorado State Univ. Coop. Ext., Fort Collins
- Eurostat (2016) Eurostat—your key to European statistics [ONLINE], available at: http://ec.europa.eu/eurostat/data/database. Accesed 17 December 2016
- Franz M (2008) Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag 28:1809–1818. https://doi.org/10.1016/j.wasman. 2007.08.011
- Garg AX, Hackam D, Tonelli M (2008) Systematic review and metaanalysis: when one study is just not enough. Clin J Am Soc Nephrol 3:253–260. https://doi.org/10.2215/cjn.01430307
- Gell K, Ruijter FJD, Kuntke P, Graaff MD, Smit AL (2011) Safety and effectiveness of struvite from black water and urine as a phosphorus fertilizer. J Agric Sci 3. https://doi.org/10.5539/jas.v3n3p67
- George TS, Hinsinger P, Turner BL (2016) Phosphorus in soils and plants—facing phosphorus scarcity. Plant Soil 401:1–6. https://doi. org/10.1007/s11104-016-2846-9
- Gonzalez Ponce R, Garcia Lopez De Sa ME (2007) Evaluation of struvite as a fertilizer: a comparison with traditional P sources. Agrochimica 51:301–308
- Hammond J, White P (2005) Is struvite a valuable phosphate source for agriculture? Entrust project report 675382.006
- Hao X, Wang C, van Loosdrecht MCM, Hu Y (2013) Looking beyond struvite for P-recovery. Environ Sci Technol 47:4965–4966. https:// doi.org/10.1021/es401140s

- Harrison EZ, Oakes SR, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367:481–497. https://doi.org/10. 1016/j.scitotenv.2006.04.002
- Hass A, Gonzalez JM, Lima IM, Godwin HW, Halvorson JJ, Boyer DG (2012) Chicken manure biochar as liming and nutrient source for acid Appalachian soil. J Environ Qual 41:1096–1106. https://doi. org/10.2134/jeq2011.0124
- Hilt K, Harrison J, Bowers K, Stevens R, Bary A, Harrison K (2016) Agronomic response of crops fertilized with struvite derived from dairy manure. Water Air Soil Pollut 227:388. https://doi.org/10. 1007/s11270-016-3093-7
- Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. https://doi.org/10.1023/a:1013351617532
- Huygens D, Saveyn H (2017) Draft STRUBIAS interim report—market study for recovered phosphate salts, ash-based materials and pyrolysis materials in view of their possible inclusion as component material categories in the Revised EU Fertiliser Regulation. Circular Economy and Industrial Leadership Unit, Directorate B—Growth and Innovation, Joint Research Centre—European Commission
- Huygens D, Saveyn H, Eder P, Delgado Sancho L (2016) Towards possible process and product criteria for struvite, biochar and ash-based products for use in fertilising products. Background document for the Kick-off Meeting of the STRUBIAS Sub-group of the Commission Expert Group on Fertilisers. Joint Research Centre, European Commission, Sevilla, pp. 132
- Huygens D, Saveyn H, Eder P, Delgado Sancho L (2017) Draft STRUBIAS technical proposals—draft nutrient recovery rules for recovered phosphate salts, ash-based materials and pyrolysis materials in view of their possible inclusion as component material categories in the Revised EU Fertiliser Regulation. Circular Economy and Industrial Leadership Unit, Directorate B—Growth and Innovation, Joint Research Centre—European Commission
- Johnston AE, Richards IR (2003) Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use Manag 19: 45–49. https://doi.org/10.1079/sum2002162
- Jordan-Meille L, Rubæk GH, Ehlert PAI, Genot V, Hofman G et al (2012) An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soil Use Manag 28: 419–435. https://doi.org/10.1111/j.1475-2743.2012.00453.x
- Katanda Y, Zvomuya F, Flaten D, Cicek N (2016) Hog-manure-recovered struvite: effects on canola and wheat biomass yield and phosphorus use efficiencies. Soil Sci Soc Am J 80:135–146. https://doi.org/10. 2136/sssaj2015.07.0280
- Komiyama T, Kobayashi A, Yahagi M (2013) The chemical characteristics of ashes from cattle, swine and poultry manure. J Mater Cycles Waste Manag 15:106–110. https://doi.org/10.1007/s10163-012-0089-2
- Kuligowski K, Poulsen TG, Rubæk GH, Sørensen P (2010) Plantavailability to barley of phosphorus in ash from thermally treated animal manure in comparison to other manure based materials and commercial fertilizer. Eur J Agron 33:293–303. https://doi.org/10. 1016/j.eja.2010.08.003
- Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431. https://doi.org/10.1002/ 1522-2624(200008)163:4<421::aid-jpln421>3.0.co;2-r
- Lehmann J, Joseph S (2015) Biochar for environmental management science, technology and implementation, 2nd edn. Routledge, New York
- Liu Y, Rahman MM, Kwag JH, Kim JH, Ra C (2011) Eco-friendly production of maize using struvite recovered from swine wastewater as a sustainable fertilizer source. Asian Australas J Anim Sci 24:1699– 1705. https://doi.org/10.5713/ajas.2011.11107
- Liu X, Tao Y, Wen G, Kong F, Zhang X, Hu Z (2016) Influence of soil and irrigation water pH on the availability of phosphorus in struvite derived from urine through a greenhouse pot experiment. J Agric

Food Chem 64:3324–3329. https://doi.org/10.1021/acs.jafc. 6b00021

- Lowman A, McDonald MA, Wing S, Muhammad N (2013) Land application of treated sewage sludge: community health and environmental justice. Environ Health Perspect 121:537–542. https://doi.org/10. 1289/ehp.1205470
- Ma YL, Matsunaka T (2013) Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Sci Plant Nutr 59:628–641. https://doi.org/10.1080/ 00380768.2013.806205
- MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world's croplands. Proc Natl Aca Sci U S A 108:3086–3091. https://doi.org/10.1073/ pnas.1010808108
- Massey MS, Davis JG, Ippolito JA, Sheffield RE (2009) Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agron J 101:323–329. https://doi.org/10.2134/ agronj2008.0144
- McAuley L, Pham B, Tugwell P, Moher D (2000) Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses? Lancet 356:1228–1231. https://doi.org/10. 1016/s0140-6736(00)02786-0
- McBride MB (2003) Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks? Adv Environ Res 8:5–19. https://doi.org/10.1016/S1093-0191(02)00141-7
- McLaughlin MJ (2002) Measuring P availability in soils fertilized with water-soluble P fertilizers using 32P methodologies. IAEA Tecdoc 1272, IAEA, Vienna, pp. 331–341
- Müller-Stöver D, Ahrenfeldt J, Holm JK, Shalatet SGS, Henriksen U, Hauggaard-Nielsen H (2012) Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response. Nutr Cycl Agroecosyst 94:193–207. https://doi.org/10.1007/s10705-012-9533-x
- Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377:439–456. https://doi.org/10.1007/s11104-013-1968-6
- Nelson NO, Janke RR (2007) Phosphorus sources and management in organic production systems. Horttechnology 17:442–454
- Neyroud JA, Lischer P (2003) Do different methods used to estimate soil phosphorus availability across Europe give comparable results? J Plant Nutr Soil Sci 166:422–431. https://doi.org/10.1002/jpln. 200321152
- Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European Soil Data Centre: response to European policy support and public data requirements. Land Use Policy 29:329–338. https://doi.org/10. 1016/j.landusepol.2011.07.003
- Plaza C, Sanz R, Clemente C, Fernandez JM, Gonzalez R et al (2007) Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. J Agric Food Chem 55:8206–8212. https://doi.org/10.1021/ jf071563y
- Pogue J, Yusuf S (1998) Overcoming the limitations of current metaanalysis of randomised controlled trials. Lancet 351:47–52. https:// doi.org/10.1016/s0140-6736(97)08461-4
- Prasad M, Spiers TM, Ravenwood IC (1988) Target phosphorus test values for vegetables. N Z J Exp Agric 16:83–90. https://doi.org/ 10.1080/03015521.1988.10425619
- R Development Core Team (2008) R: a language and environment for statistical computing. Vienna, Austria
- Reiter MS, Middleton A (2016) Nutrient availability from poultry litter co-products—appendix F. Virginia Tech Eastern Shore Agricultural Research and Extension Center, Virginia
- Reuter HI, Lado LR, Hengl T, Montanarella L (2008) Continental-scale digital soil mapping using european soil profile data: soil pH. In: Böhner J, Blaschke T, Montanarella L (eds) SAGA—seconds out.

Agron. Sustain. Dev. (2018) 38:52

Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, Universität Hamburg Institut für Geographie, Hamburg, pp 113–126

- Rex M, Drissen P, Bartsch S, Breuer J, Pischke J (2013) Pflanzenverfügbarkeit von Phosphaten aus Klärschlamm- und Tiermehlaschen nach Aufschluss in flüssiger Konverterschlacke. VDLUFA Schriftenreihe 69
- Ruiz Diaz DA, Mueller ND, Heller K, Nelson NO (2010) Phosphorus recovered from feedlot manure as fertilizer source for corn and soybean. Kansas State University, Kansas City, pp 8–11
- Sattari SZ, Bouwman AF, Martinez Rodriguez R, Beusen AHW, van Ittersum MK (2016) Negative global phosphorus budgets challenge sustainable intensification of grasslands. Nat Commun 7. https://doi. org/10.1038/ncomms10696
- Schiemenz K, Eichler-Löbermann B (2010) Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr Cycl Agroecosyst 87:471–482. https://doi.org/10.1007/s10705-010-9353-9
- Schiemenz K, Kern J, Paulsen H-M, Bachmann S, Eichler-Löbermann B (2011) Phosphorus fertilizing effects of biomass ashes. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer Berlin Heidelberg, Berlin, pp 17–31
- Schoumans OF, Rulkens WH, Oenema O, Ehlert PAI (2010) Phosphorus recovery from animal manure—technical opportunities and agroeconomical perspectives. Alterra Report 2158, Alterra, Wageningen
- Schoumans OF, Bouraoui F, Kabbe C, Oenema O, van Dijk KC (2015) Phosphorus management in Europe in a changing world. Ambio 44: S180–S192. https://doi.org/10.1007/s13280-014-0613-9
- Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. EU Tender ENV.B.1./ETU/2009/0025. Wageningen UR & Stockholm Environment Institute (SEI), Wageningen
- Schwarzer G (2007) meta: an R package for meta-analysis. R News 7:40–45
- Schwarzer G, Carpenter JR, Rücker G (2015) An introduction to metaanalysis in R, Meta-Analysis with R. Springer International Publishing, Cham
- Severin M, Breuer J, Rex M, Stemann J, Adam C et al (2014) Phosphate fertilizer value of heat treated sewage sludge ash. Plant Soil Environ 60:555–561
- Siebers N, Godlinski F, Leinweber P (2014) Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. J Plant Nutr Soil Sci 177:75–83. https://doi.org/10. 1002/jpln.201300113
- Sigurnjak I, Michels E, Crappé S, Buysens S, Tack FMG, Meers E (2016) Utilization of derivatives from nutrient recovery processes as alternatives for fossil-based mineral fertilizers in commercial greenhouse production of *Lactuca sativa* L. Sci Hortic 198:267–276. https://doi. org/10.1016/j.scienta.2015.11.038

- STOWA (2016) In: Evers M, Vroegrijk M, Evers T (eds) Struviet en struviethoudende producten uit communaal afvalwater. STOWA 2016-12. Stichting Toegepast Onderzoek Waterbeheer, Amersfoort
- Talboys PJ, Heppell J, Roose T, Healey JR, Jones DL, Withers PJA (2016) Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil 401:109–123. https://doi.org/10.1007/s11104-015-2747-3
- Thompson LB (2013) Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy. Graduate Theses and Dissertations. Paper 13173
- Tóth G, Guicharnaud R-A, Tóth B, Hermann T (2014) Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron 55:42–52. https://doi.org/10.1016/j.eja.2013.12. 008
- Uysal A, Demir S, Sayilgan E, Eraslan F, Kucukyumuk Z (2014) Optimization of struvite fertilizer formation from baker's yeast wastewater: growth and nutrition of maize and tomato plants. Environ Sci Pollut Res 21:3264–3274. https://doi.org/10.1007/ s11356-013-2285-6
- van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542:1078–1093. https://doi.org/10.1016/j.scitotenv.2015.08.048
- Vaneeckhaute C, Janda J, Vanrolleghem PA, Tack FMG, Meers E (2016) Phosphorus use efficiency of bio-based fertilizers: bioavailability and fractionation. Pedosphere 26:310–325. https://doi.org/10.1016/ S1002-0160(15)60045-5
- Vogel T, Nelles M, Eichler-Löbermann B (2015) Phosphorus application with recycled products from municipal waste water to different crop species. Ecol Eng 83:466–475. https://doi.org/10.1016/j.ecoleng. 2015.06.044
- Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108:4628–4669. https://doi.org/10. 1021/cr0782574
- Weigand H, Bertau M, Huebner W, Bohndick F, Bruckert A (2013) RecoPhos: full-scale fertilizer production from sewage sludge ash. Waste Manag 33:540–544. https://doi.org/10.1016/j.wasman.2012. 07.009
- Weinfurtner K, Gäth S, Kördel W, Waida C (2009) Ecological testing of products from phosphorus recovery processes—first results. International conference on nutrient recovery from wastewater streams. IWA Publishing, London
- Wells DE (2013) Poultry litter ash as a phosphorus source for greenhouse crop production. PhD thesis, Louisiana State University
- Wilken V, Zapka O, Muskolus A (2015) Product quality: fertilizing efficiency, results of pot and field tests. Report of the P-REX project sustainable sewage sludge management fostering phosphorus recovery and energy efficiency. Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP)

