

Soluble Phosphate Salts and Organophosphate Esters from Agricultural Biowaste

Dr Kirill Nikitin Dr Simon Hodge

UNIVERSITY COLLEGE DUBLIN

Our Interdisciplinary Team

Dr Kirill Nikitin PI

- Lead Inventor of the new DOC technology
- Organic and physical chemistry

Dr Simon Hodge Co-PI

Sustainable and organic agriculture.
Environmental ecology, plant biology and organic farming

Prof. Declan Gilheany

Co-inventor of DOC technology

Dr R. Choudhary

Post doctoral scientist

Mr Peter Mooney

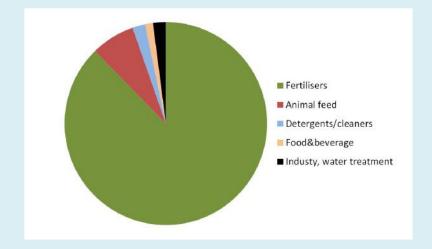
Societal Impact in Ireland

Dawn Meats Group

Mr Ziv Kohav

- Global Impact
- ICL Group

SINFERT

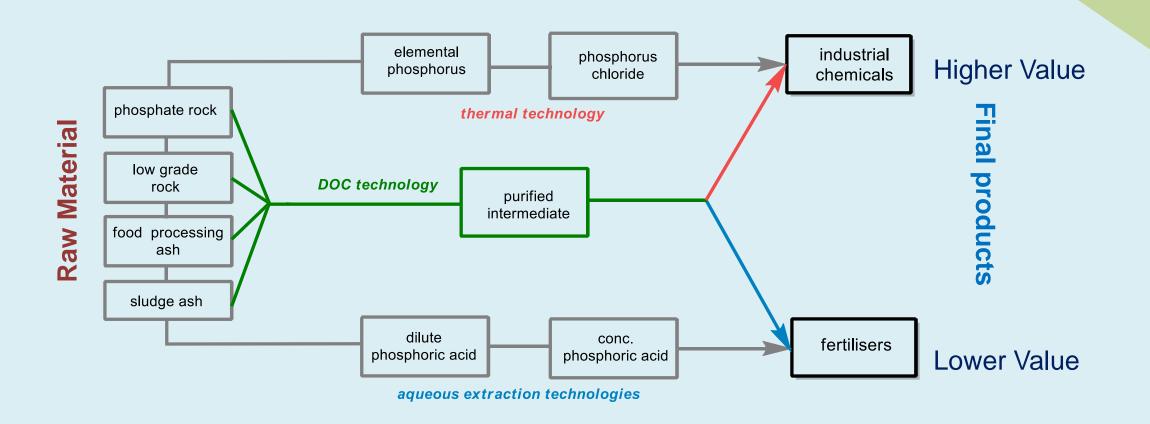

The future of Phosphorus - an Uncertain road?

Challenge

- > Supply Chain Risk
- > Finite Resource
- Insufficient phosphate recycling
- Waste regulations increasingly strict

Actions

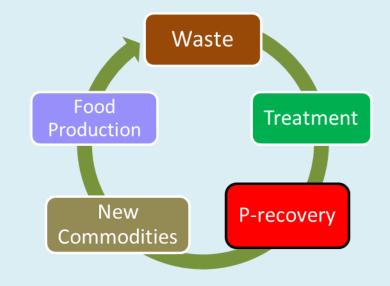
- Phosphates on the EU CRM list
- ESPP created in 2013
- > ESPC forums
- > Over 40 emerging technologies



DOC: a Novel Phosphorus recovery Technology

Why do we need another Technology?

Technological Benefits


- No acids required
- Moderate temperatures and heat recycling
- No extra CO₂ generated
- Phosphorus chemicals from solid ore/waste

Products and Outputs

- Phosphoric acid
- Phosphate salts MAP, DAP etc.
- Phosphate esters e.g. TOP
- Industrial chemicals e.g. TPP
- Environmental benefits
- Leads to circular economy

Raw Materials

- Recovery from most dry solid sources
- Rock and low-grade rock
- Municipal, bone, manure ashes
- Base and heavy metal Tolerance

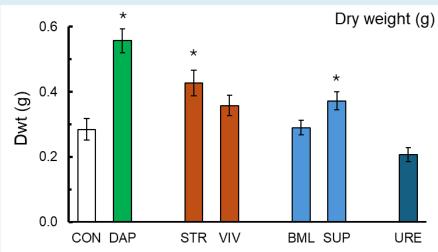
Initial Tests: Hydroxyapatite

- Efficient single batch extraction of phosphate
- Quantitative recovery in repeated runs
- Selective conversion to a volatile product
 - V

- Elevated Temperature
- Extended Extraction time
- Highly corrosive medium

Phosphate-rich Materials

Material	Source	P, %	P-Recovery Results
Phosphate rock	Siberian Apatite	18	Low
Bone meal ash	Dawn Meats, Ireland	16.3	Med/ High
Sewage Sludge Ash	ICL Group, Netherlands SNB	12	Med/ High
Fish Bone ash	BioMarine, Ireland	17.5	High
Vivianite	Kemira, Finnland	11.7	Med/ High



Successful Greenhouse Trials of DOC Fertilizer

- ☐ Barley seedlings. Harvested 5 weeks after sowing.
- ☐ DAP synthesized via DOC chemistry
- ☐ Compared with: Control, VIV, STR, SUP, BML
- ☐ All applied at equivalent 60 kg P/ ha as powder top dressing
- ☐ Urea used as control for ammonium in DAP
- ☐ Our DAP produced shoot dwt 2-times obtained in the control
- ☐ STR and SUP also sig increased shoot growth
- ☐ But our DAP still performed better than STR and SUP

Reaching out to the P-community

Thank you!

