

DEBBY VAN ROTTERDAM ROMKE POSTMA MAARTEN VAN DOORN

Experiment stream valley

75ha mining experiment 2008 – 2021: 50 topsoil samples

6 locations, 10 years,

2 treatments: without and with N and K application

Locations vary in:

- Topsoil removal (2 locations)
- Moisture conditions (1 wet, 2 moist, 3 dry)
- Available and legacy P in topsoil and soil profile
- Soil type (1 peat, rest sand)

Decrease available P stream valley (75 ha, 12 yrs)

In 75 ha: P-mining leads to a decrease in available P in the topsoil

Rate of decrease is linearly related to initial available soil P and decreases over time

Difference with and without N&K fertiliser

Yield and P-removal are on average 2x as high with N en K fertiliser Effectiveness of fertiliser decreases over time mainly due to:

- a decrease in P-content of the grass
- not in yield (6 ton/ha -F and 12 ton/ha + F)

Mass balance available P

Sandy soils: decrease in available P (0-50cm) is a factor 2,5 – 7 lower than P-removal Rate of decresae is a function of initial available P-content

Mass balance P-reserves (P-ox)

Decrease in available soil P reserves (P-ox) is of the same order of magnitude as the total

Premoval. Exceptions:

- Peat soil (not shown)
- Wet soil with seepage

Conclusions

- Effectiveness of mining P to remove legacy P depends on soil type and hydrological setting
- Effective on dry sandy soils with low buffering capacity from P reserves + deeper soil layers
- Development of interesting vegetation takes time >10 years
- Vary in measures within stream valley to create diversity

Questions or interested to know more details?

Debby.vanrotterdam@nmi-agro.nl

