Global policy experience with nitrogen ... why not also phosphorus?

Will Brownlie on behalf of Mark Sutton NERC Centre for Ecology & Hydrology, Edinburgh

Talk outline

- An overview of the differences and overlaps between the P and N cycles
- Where we are in developing the INMS (international nitrogen management system)
- The importance of identifying our P story for policy development

Similarities

• Both vital for food production

- Population growth and increase in meat consumption will cause predicted 40-50% increase of N and P use by 2050.
- Eutrophication
 - (P inland waters, N coastal waters)

Differences

Phosphorus	Nitrogen		
No gas phase (minimal) 3 fold increase in P fertiliser since 1960 Finite supply • Potential political and economic impacts	Gas phase Global movement of N Impacts climate and human health 9 fold increase in N fertiliser since 1960 Limitless supply		

- P Rock are controlled by a handful of countries.
- Morocco has 70%
- China is reducing export to secure domestic supply
- US has <30 years of supplies left
- Western Europe and India are totally dependent on imports

Where we are in developing the international nitrogen management system

There are no global treaties that links the many benefits and threats of the altered N and P cycle.

International Nitrogen Management System (INMS)

The development of a better coordinated sciencepolicy support process – gathering evidence to support decision makers

\$6M core funding from GEF + \$40 M co-financing target

- INMS project preparation grant phase

The big message is to count the co-benefits of a joined-up nitrogen approach; with the believe that joined up management of the nitrogen cycle would strengthen the common cause of international waters & other global challenges:

Questions to be answered by INMS

- What would a global science policy support process for nitrogen look like?
- What are the issues to connect?
- Who are the players that need to be involved?
- What are the main, research, demonstration and communication challenges?

Opportunities of INMS

-Indicator refinement, moving to operational delivery to support countries, inc benchmarking

-Sharing and development of mitigation and management

- practices understanding barriers
- -Understanding the context specific nature of nutrient threats via regional demonstration on 4 contrasting challenges

South Asia India, Nepal, Sri Lanka, Bangladesh *Lead: INI South Asia* Policy: SACEP

Developing countries: Excess nitrogen

South America

Brazil, tbc Implementation: INI South America Policy: Links to GPA East Asia (western Pacific seaboard) China, Japan, S. Korea, Philippines *Network: INI East Asia, GPNM, OECD* Policy: PEMSEA, GPA Dniester. Dnieper, (part of) Danube Ukraine, Moldova, Romania, Belarus *Implementation: EPN-EECCA, TFRN* Policy: UNECE -CLRTAP & Transboundary Waters, Black Sea Commission, Danube River Basin Commission

		Dniestr	Dniepr	Danube
basin area	km²	71 442	503 988	785 306
runoff	mm/yr	107	119	259
pop density	inhab/km²	102	61	102
%agricultural area	%	75	63	58
Net Inputs to wtshd	kgN/km²/yr	2 264	2 660	3 605
N delivery at outlet	kgN/km²/yr	132	99	468

Economies in transition

Lake Victoria Kenya, Tanzania, Rwanda, Burundi *Lead: INI Africa* Policy: Lake Victoria Commission

Developing countries: Insufficient nitrogen

Developed countries: Excess nitrogen

Western Europe, Atlantic Seaboard

France, Spain, Portugal Unfunded – supported through existing projects, adding value to the global network.

Components diagram for the INMS

The importance of identifying our P story for policy development

Nitrogen Assessme vervuiling met The European stikstofkost miljarden

Sources, Effects and Policy Perspectives

> Edited by Pollution a l'azote : une lourde facture pour l'Éturope Mark A. Sutton Jan Willem Erisman Hans van Grinsven

Biohackers take biology into the

Warning over nitrogen foot

garage p.167

foo much of a good thing

might protect bluefin tu with trawlers grounde

twenty-first century, argue Mark Sutton and his colleagues.

Nature 14 April 2011

Union defends use of nitrogen in high-octane climate change debate www.nine-esf.org/ENA

CAMBRIDGE

Five key threats

- The WAGES of too much nitrogen
- Water quality Air quality Greenhouse balance Ecosystems Soil quality
- Plus better food & energy supply

European Nitrogen Assessment, 2011

"20:20 for 2020" 20% better NUE: saving 20 Mt N per yr by 2020

Benefits expressed here as N saving / ha per year (Full-chain NUE)

Bottom line for the Green Nutrient Economy (\$billion/year) Net Benefit 170= Fert Saving 23 + Env+Health 160 – Implementation 12

It is about identifying the audience, distilling the story from the information we have, and tailoring it to capture their interest

What are the key threats?

Eutrophication? Food security? Economy? Geo-Political Stability? Running out?

What are the key threats?

Eutrophication? Food security? Economy? Geo-Political Stability? Running out?

What are the impacts?

Starvation? Economic cost? Political tension? Ecosystem damage?

Who does it impact?

Countries that rely on P imports? Countries that can't afford P fertilisers? Countries that use too much P? Everyone?

What are the key threats?

Eutrophication? Food security? Economy? Geo-Political Stability? Running out?

What are the impacts?

Starvation? Economic cost? Political tension? Ecosystem damage?

Who does it impact?

Countries that rely on P imports? Countries that can't afford P fertilisers? Countries that use too much P? Everyone?

What are the solutions?

Reduced P use? Reduced P mining ? Increased P use efficiency ? Increased P recycling? Reduced societal dependence on P ? Fairer distribution of P ?

Who are we talking to? Who should we be talking to?

Clearly global – but clearly context specific

Clearly global – but clearly context specific

Efficiency and Sufficiency

Tasks for an inter-governmental process on the global P challenge

- Global assessment of nutrient linkages, benefits threats and Green Economy opportunities
- Investigate practice options, agree indicators and set targets for improved P management
- Address barriers to change, fostering education, stakeholder discourse and public awareness
- Quantify the multiple benefits of meeting the targets: inc. how these support other global treaties
- Monitor time-bound achievement of the targets