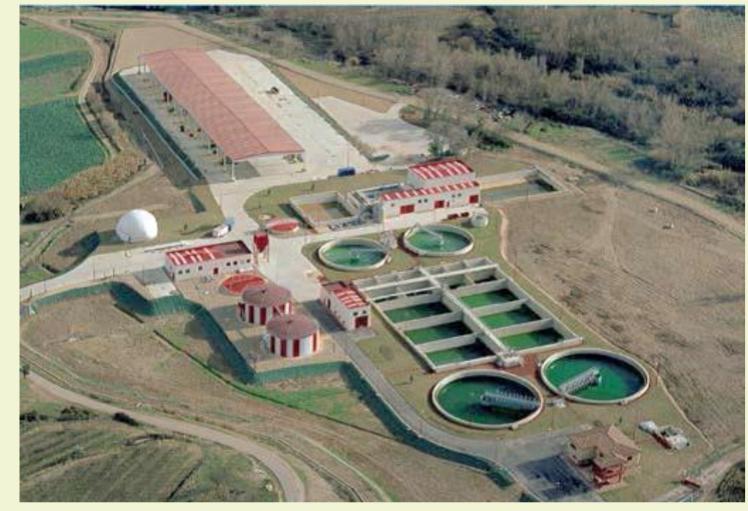
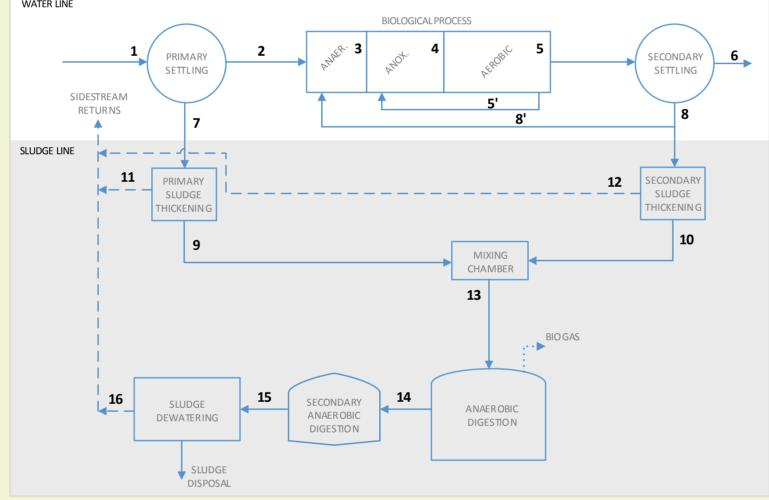
TYPHORWater Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

Phosphorus management and recovery from wastewater as struvite


L.Pastor¹, A.Bouzas², D.Mangin³, A.Seco², S.Doñate¹, R.Barat⁴, C.Cogné³, N.Martí², J.Ferrer⁴, S.Grau¹, L.Borrás², E.Morales¹, E.Gagnière³ 1- Depuración de Aguas del Mediterráneo (DAM). Avenida Benjamín Franklin, 21. 46980 Parque Tecnológico, Paterna (Valencia). 2- CALAGUA. Dpto. de Ingeniería Química, Universitat de València. Avinguda de la Universitat s/n. 46100 Burjassot, Valencia. 3- Laboratoire d'Automatique et de Génie des Procédés (LAGEP) Université Lyon 1, UMR CNRS 5007, CPE Lyon. 4- CALAGUA. Instituto de Ingeniería del Agua y Medio Ambiente, IIAMA. Universitat Politècnica de València. Camí de Vera, s/n. 46022, Valencia.


INTRODUCTION

The scarcity of phosphorus (P) (essential resource for life) as well as the problems associated to its presence in wastewater requires the development of a sustainable management (social, economic and environmental) of this resource in the WWTPs. In this context, the consortium formed by DAM, CALAGUA, and LAGEP are performing the PHORWater project which suggests P recovery as struvite (MgNH₄PO₄·6H₂O) using the sludge supernatants' flows. The project will provide an integrated solution that involves the application of techniques of P management in those WWTPs that have enhance biological phosphorus removal (EBPR) and anaerobic digestion for sludge stability. The main objective of PHORWater is to demonstrate, at pre-industrial scale, the viability and sustainability of the correct management of the P in a WWTP obtaining struvite by crystallization.

METHODOLOGY

The project takes place at El Cidacos WWTP (Calahorra, La Rioja, SPAIN) with 23.000 m^3/d capacity, which has an activated sludge process (A20 configuration) and anaerobic digestion of the primary and secondary sludge (see Figure 1).

RESULTS

Between November 2013 and February 2014 took place the "Integral management of the WWTP for the optimal phosphorus recovery" action by 5 exhaustive sampling campaigns on 16 points along the water and sludge lines (Figure 1b). The main results are:

- ✓ Development of a "Manual of characterization of WWTP" which identifies minimum sampling points and the required parameters to be analyzed in each one of them.
- ✓ The water line of the WWTP presents good yields of phosphorus

(a) **(b)** Figure 1. Aerial view of El Cidacos WWTP (a). Flowchart of the WWTP (b).

The project is based on five major technical actions:

- Integral management of the WWTP for optimal recovery of P.
 - \checkmark Maximize the concentration of P in the supernatants.
 - \checkmark Minimize the uncontrolled precipitation of P.
- Design and construction of ulletthe crystallization reactor treat 20 m³/d of to supernatants.
- Implementation, control and \bullet

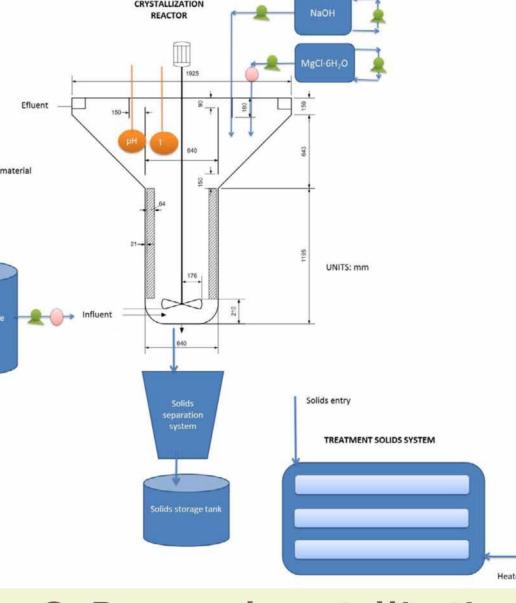


Figure 2. Proposed crystallization reactor scheme.

removal.

- \succ Between 81 and 95%.
- \checkmark The main P loss point at the WWTP is the anaerobic digester.
 - > Between 8 and 12 g of P precipitated by kg of treated sludge.
 - Around 60-80% of the P entering this unit precipitates.
- \checkmark The maximum availability of P (phosphate to be recovered) is placed in the mixing chamber.
 - \succ P available in the mixing chamber over triples the incoming P.

CONCLUSION

The main outcomes during the analysis of the current management of the wastewater treatment plant are:

- There are good yields of P removal in the water line, which is key to ensure its recovery.
- The loss of P in the digester, associated with ullet

continuous operation of the proposed process:

- \checkmark Optimization of the EBPR process.
- Minimization of P entering to anaerobic digestion in order to reduce its precipitation.
- ✓ P recovery by crystallization as struvite.
- Validation of the obtained struvite as fertilizer.
- Economical and feasibility study. \bullet

- precipitation processes, is assumed between 8 and 12 g of P per kg of treated sludge.
- Only between 20 and 32% of P reaching the sludge • line could be available to be recovered.
- Phosphorus recovery has to go through the optimization of the extraction of phosphate released into the mixing chamber

ACKNOWLEDGEMENTS

This paper has been prepared under the co-financing of the European financial instrument for the environment (LIFE +) during the implementation of the project "PHORWater" (LIFE12 ENV/ES/000441). PHORWater team appreciates the financial support of the European financial instrument for the environment (LIFE +).