Criticality Assessment of Phosphorus regarding Specificity and Functionality

Study		Definition of criticality	Goal of the study	materials	Number of considered	Used criteria		Remark	Use of criteria	Criteria	Mining	Processing	Use	Re-Phase	Micro level (Sensitivity Analyses)	Macro level /	Materials Criticality/ Functional Criticality	Practical relevance	(Compounds)	Phosphorus considered	
European Commission 2010 + 2014	economy are higher compared	Raw material is labelled critical when the risks of supply shortage and their impacts on the	Identification of critical raw materials for the EU	41 (2010) / 54 (2014)	41 (2010) / 54 (2014)	Economic Importance for the EU		Mega sectors			-	~	~	-	The study analyses criti		The study addresses t	Based on the practica			
						Stability and Level of Country Concentration	S (WG Indi Conce	upply Risk Part 1 I-World Governance cators and Country entration of Producing Countries)	J		~	-	-	-	cality on a macro le		he materials critical	al relevance it is cha	There is no raw m	2010 N	
	with mo:					Substitutability	S	upply Risk Part 2				✓	✓		vel. Sen		lity. Fun	allenging	aterial d	o / 2014	
	st of the other raw materials.					Recycling	S	upply Risk Part 3				-	-	✓	nsitivity		ctional c	y to mak	lefinitio	Yes	
						Environmental Country Risk	(E Perf Cour Pro	PI-Environmental formance Index and atry Concentration of oducing Countries)			~				analyses are not yet considered.		riticality is not yet considered.	ce practical recommendations.	n used.		
							Colour code	Quantitative	Qualit	ative		Considered			Not	Not Considered			Not Applicable		

Status quo

The assessment of raw material criticality is a relatively new field of research that created several studies with more or less the same results in the past eight years. Although addressing different system boundaries and target groups, the use of almost the same quantitative indicators led to similar results. In consequence no methodological development has taken place which becomes evident in the recent EU study "critical raw materials for the EU" [1-3]. Even though phosphorus or phosphate rock is yet underrepresented in this kind of studies, it exemplifies in particular the inherent methodical challenges. In conclusion the aggregation of the information puts the validity and relevance into question. However an assessment on an overall or macro-level is necessary, but has to be additionally complemented by contextualized research using specific and functional criteria. For instance using mine specific information beyond **USGS** Information.

The value und production chain of industrial phosphate applications is different to those of fertilizers e.g. further purification is needed; the production plants are different ones, the subsequent manufacturers are different ones [4].

Specificity

For the emerging lithium ion technology multiple battery electrode materials can be

applied, in particular lithium cobalt dioxide (LiCoO₂), lithium iron phosphate (LiFePO₄) or hexafluorophosphate lithium $(LiPF_6)$ [5]. While $LiPF_6$ can only be gainded by the P_4 production route, LiFePO₄ can also be produced through PPA. The high country concentration of P_4 -production in Asian countries is facing different issues than fertilizer supply. In addition this context view balances between the loss of phosphates in battery technology at EoL and the use of cobalt as critical metal. This approach requires an in-depth analysis of the value and supply chain of the respective specific function and can be seen as a sensitivity analysis of criticality. Following industrial phosphate phosphorus and applications used are to demonstrate the necessity for differentiated this view depending on the specific Pfunction.

M۵

Universität

O. Gantner & A. Reller

Augsburg

University

Selected examples

http://www.springer.com/environment/sustainable+development/book/978-94-007-7249-6

[5] Korthauer, R. (2013): Handbuch Lithium-Ionen-Batterien. Springer, Berlin Heidelberg. 436 Seiten. DOI 10.1007/978-3-642-30653-2

http://www.springer.com/springer+vieweg/energie+%26+umwelt/energiequellen,+energiewirtschaft/book/978-3-642-30652-5

Functionality

Strengths and weaknesses in current cathode

www.ressourcenforschung.de

—Lithium Iron Phosphate

Lithium Cobalt Dioxide